Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T20:48:25.694Z Has data issue: false hasContentIssue false

The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach

Published online by Cambridge University Press:  26 February 2011

Ildar Sabirianov
Affiliation:
sabirian@unlserve.unl.edu, University of Nebraska at Lincoln, College of Engineering/Nebraska Center for Materials and Nanoscience, 209N Walter Scott Engineering Center, 17th & Vine Streets, Lincoln, NE, 68588-0511, United States
Robert W Fairchild
Affiliation:
rwf@nebrwesleyan.edu, Nebraska Wesleyan University, Physics, 5000 St. Paul Ave. Olin Hall of Science 133, Lincoln, NE, 68504-2794, United States
Jennifer I Brand
Affiliation:
jbrand1@unl.edu, University of Nebraska at Lincoln, College of Engineering/Nebraska Center for Materials and Nanoscience, 17th & Vine Streets, WSEC, UNL, 245N, Lincoln, NE, 68588-0511, United States
Get access

Abstract

Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector).

Diodes were fabricated from natural abundance boron (20% 10B and 80% 11B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and unmoderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Robertson, B.W., Adenwalla, S., Harken, A., Welsch, P., Brand, J.I., Dowben, P.A. and Claassen, J.P., Applied Physics Letters 80, 36443646 (2002)Google Scholar
[2] Robertson, B.W., Adenwalla, S., Harken, A., Welsch, P., Brand, J.I., Claassen, J.P., Boag, N.M., and Dowben, P.A., Advances in Neutron Scattering Instrumentation, Anderson, I.S., Guérard, B., Eds. Proc. SPIE Vol.4785, 226233 (2002)Google Scholar
[3] Adenwalla, S., Billa, R., Brand, J.I., Day, E., Diaz, M.J, Harken, A., McMullen-;Gunn, A., Padmanabhan, R. and Robertson, B.W., Penetrating Radiation Systems and Applications V, Proc. SPIE 5199, 7074 (2003)Google Scholar
[4] Caruso, A.N., Billa, R.B., Balaz, S., Brand, J.I. and Dowben, P.A., J. Physics Condensed Matter 16, L139–L146 (2004)Google Scholar
[5] Harken, A.D., Day, E.E., Robertson, B.W., Adenwalla, S., Jap. J. Appl. Phys. 44, 444445 (2005)Google Scholar
[6] Day, E., Diaz, M.J., Adenwalla, S., “Effect of bias on neutron detection in thin semiconducting boron carbide films”, Applied Physics Letters, submittedGoogle Scholar
[7] Emin, D. and Aselage, T.L., J. Appl. Phys. 97, 013529 (2005)Google Scholar
[8] McIlroy, D.N., J. Physics-Condensed Matter 16, V13–V14 (2004)Google Scholar
[9] Bell, Z.W., Carpenter, D.A., Cristy, S.S., Lamberti, V.E., Burger, A., Woodfield, B.F., Niedermayr, T., Hau, I.D., Labov, S.E., Friedrich, S., West, W.G., Pohl, K.R., van der Berg, L., Phys. Stat. Solidi c2, 11592–1605 (2005)Google Scholar
[10] Owens, A., Peacock, A., Nucl. Intrumen. Methods Phys. Res. A 531, 1837 (2004)Google Scholar
[11] Martin, P.M., Vacuum Coating and Technology, 6–11 (2004)Google Scholar
[12] McGregor, D.S., Shultis, J.K., Nucl. Instrum. Methods Phys. Res. A 517, 180 (2004)Google Scholar
[13] McGregor, D.S., Shultis, J.K., Nucl. Instrum. Methods Phys. Res. A 536, 232 (2005)Google Scholar
[14] Sato, N., Ishiwata, O., Seki, Y., and Ueda, A., Jpn. J. Appl. Phys. 29, 2526 (1990).Google Scholar
[15] McGregor, D.S., Vernon, S.M., Gersch, H.K., Markham, S.M., Wojtczuk, S.J., and Wehe, D.K., IEEE Trans. Nucl. Sci. 47, 1364 (2000).Google Scholar
[16] Baker, C.A., Green, K., van der Grinten, M.G.D., Iaydjiev, P.S., Ivanov, S.N., Al- Ayoubi, S., Harris, P.G, Pendlebury, J.M., Shiers, D.B., and Geltenbort, P., Nucl. Instrum. Methods A 487, 511 (2002).Google Scholar
[17] Rose, A., Nucl. Instrum. Methods 52, 166 (1967)Google Scholar
[18] Harken, A.D., Lundstedt, C.N., Day, E.E. and Robertson, B.W., “Neutron Detection Efficiency and Capture Product Energy Spectra of All-Semiconducting-Boron Carbide and Conversion-Layer Detectors”, IEEE Transactions on Nuclear Science, Volume 7, 1622 Oct. 2004 Page(s):45854589 Google Scholar
[19] Lundstedt, C., Harken, A., Day, E., Robertson, B.W., and Adenwalla, S., “Modeling Solid-State Boron Carbide Low Energy Neutron Detectors”, Nucl. Instrum. And Methods in Phys. Res. A 562 (2006) 380 Google Scholar
[20] Hwang, S.-D., Byun, D., Ianno, N.J., Dowben, P.A., Kim, H.R., Appl. Phys. Lett. 68, 14951497 (1996)Google Scholar
[21] Adenwalla, S., Welsch, P., Harken, A., Brand, J.I., Sezer, A., Robertson, B.W., Appl. Phys. Lett. 79, 43574359 (2001)Google Scholar
[22] Hwang, S.-D., Yang, K., Dowben, P.A., Ahmad, A.A., Ianno, N.J., Li, J.Z., Lin, J.Y.,Jiang, H.X., McIlroy, D.N., Appl. Phys. Lett. 70, 10281030 (1997)Google Scholar
[23] Caruso, A.N., Dowben, P.A., Balkir, S., Schemm, N., Osberg, K., Fairchild, R.W.,Flores, O.B., Balaz, S., Harken, A.D., Robertson, B.W., Brand, J.I., Material Science and Engineering B 135 (2006) 129133 Google Scholar