Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:16:28.418Z Has data issue: false hasContentIssue false

AlGaN/GaN Heterostructure Field-Effect Transistors with Back-Doping Design for High-Power Applications: High Current Density with High Transconductance Characteristics

Published online by Cambridge University Press:  11 February 2011

Narihiko Maeda
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0198, Japan
Kotaro Tsubaki
Affiliation:
Department of Electrical & Electronic Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350–8585, Japan
Tadashi Saitoh
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0198, Japan
Takehiko Tawara
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0198, Japan
Naoki Kobayashi
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–0198, Japan
Get access

Abstract

Electron transport properties and DC device characteristics have been examined in the AlGaN/GaN heterostructure field-effect transistors (HFETs) with back-doping design that makes it possible to obtain high two-dimensional electron gas (2DEG) densities even for the devices with thin AlGaN barrier layers. In the back-doping design, an asymmetric double-heterostructure is employed, and donor atoms are doped not only in the surface-side AlGaN layer but also in the underlying AlGaN layer. In this structure, electrons are efficiently supplied also from the back-doped AlGaN barrier layer to the GaN channel and merged into a single 2DEG layer, with the help of the negative polarization charges at the heterointerface between the GaN channel and the underlying AlGaN barrier layer. By using back-doping design, very high 2DEG densities around 3×1013 cm−2 has been achieved in the Al0.3Ga0.7N/GaN HFET whose barrier layer (Al0.3Ga0.7N) is designed to be as thin as 120 Å. An HFET with the gate-length of 1.5 μm has exhibited a high current density of 1.2 A/mm and a high transconductance of 200 mS/mm, which is ascribed to high 2DEG densities and thin barrier layers in these devices. HFETs with the back-doping design are thus promising for high-power applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M.A., Chen, Q., Shur, M.S., Mcdermott, B.T., and Higgins, J.A.: IEEE Electron Device Lett. 17, 325 (1996).Google Scholar
2. Binari, S.C., Redwing, J. M., Kelner, G., and Kruppa, W.: Electron. Lett. 33, 242 (1997).Google Scholar
3. Wu, Y. F., Keller, B. P., Fini, P., Keller, S., Jenkins, T. J., Kehias, L. T., Denbaars, S. P., and Mishra, U. K.: IEEE Electron Device Lett. 19, 50 (1998).Google Scholar
4. Sheppard, S. T., Doverspike, K., Pribble, W. L., Allen, S. T., Palmour, J. W., Kehias, L. T., and Jenkins, T. J.: IEEE Electron Dev. Lett. 20, 161 (1999).Google Scholar
5. Gaska, R., Chen, Q., Yang, J., Osinsky, A., Khan, M. A., and Shur, M. S.: IEEE Electron Device Lett. 18, 492 (1997).Google Scholar
6. Maeda, N., Saitoh, T., Ttsubaki, K., Nishida, T., and Kobayashi, N.: Jpn. J. Appl. Phys. 38, L987 (1999).Google Scholar
7. Egawa, T., Ishikawa, H., Umeno, M., and Jimbo, T.: Appl. Phys. Lett. 76, 121 (2000).Google Scholar
8. Maeda, N., Tsubaki, K., Saitoh, T. and Kobayashi, N.: Appl. Phys. Lett. 79, 1634 (2001).Google Scholar
9. Maeda, N., Tsubaki, K., Saitoh, T. and Kobayashi, N.: Physica Status Solidi(a), 188, 223 (2001).Google Scholar
10. Moon, J. S., Micovic, M., Janke, P., Hashimoto, P., Wong, W. S., McCray, L. M., Kurdoghlian, A. and Nguyen, C.: Electron Lett. 37, 528 (2001).Google Scholar
11. Ando, Y., Okamoto, Y., Miyamoto, H., Hayama, N., Nakayama, T., Kasahara, K. and Kuzuhara, M.: Technical Digest of Int. Electron Devices Meeting 2001, 381 (Electronic Devices Society of IEEE, Washington DC, 2001).Google Scholar
12. Kumar, V., Lu, W., Khan, F. A., Schwindt, R., Kuliev, A., Yang, J., Khan, M. Asif and Adesida, I.: Technical Digest of Int. Electron Devices Meeting 2001, 573 (Electronic Devices Society of IEEE, Washington DC, 2001).Google Scholar
13. Maeda, N., Nishida, T., Kobayashi, N., and Tomizawa, M.: Appl. Phys. Lett. 73, 1856 (1998).Google Scholar
14. Shen, B., Someya, T., and Arakawa, Y.: Appl. Phys. Lett. 76, 2746 (2000).Google Scholar
15. Hiroki, M., Maeda, N., and Kobayashi, N., J. of Cryst. Growth 237–239 Prt 2, 956 (2002).Google Scholar
16. Optoelectronic Properties of Semiconductors and Supper Lattices, Vol. 16, III-V Nitride Semiconductors: Applications and Devices, 273 (Taylor & Francis Books, Inc. New York, 2002).Google Scholar