Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:43:17.843Z Has data issue: false hasContentIssue false

AlGaN p-i-n Photodiode Arrays for Solar-Blind Applications

Published online by Cambridge University Press:  17 March 2011

P. Lamarre
Affiliation:
BAE SYSTEMS, Lexington, Massachusetts and Nashua, New Hampshire, U.S.A.
A. Hairston
Affiliation:
BAE SYSTEMS, Lexington, Massachusetts and Nashua, New Hampshire, U.S.A.
S. Tobin
Affiliation:
BAE SYSTEMS, Lexington, Massachusetts and Nashua, New Hampshire, U.S.A.
K. K. Wong
Affiliation:
BAE SYSTEMS, Lexington, Massachusetts and Nashua, New Hampshire, U.S.A.
M. F. Taylor
Affiliation:
BAE SYSTEMS, Lexington, Massachusetts and Nashua, New Hampshire, U.S.A.
A. K. Sood
Affiliation:
BAE SYSTEMS, Lexington, Massachusetts and Nashua, New Hampshire, U.S.A.
M. B. Reine
Affiliation:
BAE SYSTEMS, Lexington, Massachusetts and Nashua, New Hampshire, U.S.A.
M. J. Schurman
Affiliation:
Emcore Corporation, Somerset, New Jersey, U.S.A.
I. T. Ferguson
Affiliation:
Emcore Corporation, Somerset, New Jersey, U.S.A.
R. Singh
Affiliation:
ECE Dept. and Photonics Center, Boston University, Boston, Massachusetts, U.S.A.
C. R. Eddy
Affiliation:
ECE Dept. and Photonics Center, Boston University, Boston, Massachusetts, U.S.A.
Get access

Abstract

This paper presents UV imaging results for a 256×256 AlGaN Focal Plane Array that uses a back-illuminated AlGaN heterostructure p-i-n photodiode array, with 30×30 μm2 unit cells, operating at zero bias voltage, with a narrow-band UV response between 310 and 325 nm. The 256×256 array was fabricated from a multilayer AlGaN film grown by MOCVD on a sapphire substrate. The UV response operability (>0.4×average) was 94.8%, and the UV response uniformity (σ/μ) was 16.8%. Data are also presented for back-illuminated AlGaN p-i-n photodiodes from other films with cutoff wavelengths ranging between 301 and 364 nm. Data for variable-area diagnostic arrays of p-i-n AlGaN photodiodes with a GaN absorber (cutoff=364 nm) show: (1) high external quantum efficiency (50% at V=0 and 62% at V=-9 V); (2) the dark current is proportional to junction area, not perimeter; (3) the forward and reverse currents are uniform (σ/μ=50% for forty 30×30 μm2 diodes at V=−40 V); (4) the reverse-bias dark current data versus temperature and bias voltage can be fit very well by a hopping conduction model; and (5) capacitance versus voltage data are consistent with nearly full depletion of the unintentionally-doped 0.4 μm thick GaN absorber layer and imply a donor concentration of 3-4×1016 cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schreiber, P., Dang, T., Pickenpaugh, T., Smith, G., Gehred, P. and Litton, C., “Solar Blind UV Region and UV Detector Development Objectives”, Proc. SPIE 3629, 230248 (1999).Google Scholar
2. Huang, Z.C., Mott, D.B. and Shu, P.K., “256×256 GaN Ultraviolet Imaging Array”, Paper CP420, Space Technology and Applications International Forum-1998, DOE Conf. 980103 (Am. Inst. Phys. 1998).Google Scholar
3. Huang, T.Z.C., Mott, D.B. and La, A., “Development of 256×256 GaN Ultraviolet Imaging Arrays”, Proc. SPIE 3746, 254260 (1999).Google Scholar
4. Krishnankutty, S., Yang, W., Nohava, T. and Ruden, P.P., “Fabrication and Characterization of GaN/AlGaN Ultraviolet-Band Heterojunction Photodiodes”, MRS Internet J. Nitride Semicond. Res. 3, #7 (1998).Google Scholar
5. Yang, W., Nohova, T., Krishnankutty, S., Torreano, R., McPherson, S. and Marsh, H., “Back-Illuminated GaN/AlGaN Heterojunction Photodiodes with High Quantum Efficiency and Low Noise”, Appl. Phys. Lett. 73, 1086 (1998).Google Scholar
6. Brown, J.D., Yu, Z., Matthews, J., Harney, S., Boney, J., Schetzina, J.F., Benson, J.D., Dang, K.W., Terrill, C., Nohava, T., Yang, W. and Krishnankutty, S., “Visible-Blind UV Digital Camera Based On a 32 × 32 Array of GaN/AlGaN p-i-n Photodiodes”, MRS Internet J. Nitride Semicond. Res. 4, #9 (1999).Google Scholar
7. Brown, J.D., Boney, J., Matthews, J., Srinivasan, P., Schetzina, J. F., Nohava, T., Yang, W. and Krisnankutty, S., “UV-Specific (320-365 nm) Digital Camera Based on a 128×128 Focal Plane Array of GaN/AlGaN p-i-n Photodiodes”, MRS Internet J. Nitride Semicond. Res. 5, #6 (2000).Google Scholar
8. Tarsa, E.J., Kozodoy, P., Ibbetson, J. and Keller, B.P., “Solar-Blind AlGaN-Based Inverted Heterostructure Photodiodes”, Appl. Phys. Lett. 77, 316 (2000).Google Scholar
9.D.Lambert, J.H., Wong, M.M., Chowdhury, U., Collins, C., Li, T., Kwon, H.K., Shelton, B.S., Zhu, T.G., Campbell, J.S. and Dupuis, R.D., “Back Illuminated AlGaN Solar-Blind Photodetectors”, Appl. Phys. Lett. 77, 1900 (2000).Google Scholar
10. Brown, J.D., Li, J., Srinivasan, P., Mathews, J. and Schetzina, J.F., “Solar-Blind AlGaN Heterostructure Photodiodes”, MRS Internet J. Nitride Semicond. Res. 5, #9 (2000).Google Scholar
11. Yuan, C., Salagai, T., Gurary, A., Thompson, A.G., Kroll, W., Stall, R.A., Hwang, C.-Y., Schurman, M., Li, Y., Mayo, W.E., Lu, Y., Krishnankutty, S., Shmagin, I.K., Kolbas, R.M. and Pearton, S.J., “Investigation of n- and p-Type Doping of GaN During Epitaxal Growth in a Mass Production Scale Multiwafer-Rotating-Disk Reactor”, J. Vac. Sci. Technol. B13, 2075 (1995).Google Scholar
12. Eddy, C.R. Jr, “Etch Processing of III-V Nitrides”, Invited Paper, MRS Internet J. Nitride Semicond. Res. 4S1, G10.5 (1999).Google Scholar
13. Kuksenkov, D.V., Temkin, H., Osinsky, A., Gaska, R. and Kahn, M.A., “Origin of Conductivity and Low Frequency Noise in Reverse-Biased GaN p-n Junction”, Appl. Phys. Lett. 72, 1365 (1998).Google Scholar