Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:10:29.150Z Has data issue: false hasContentIssue false

Al2O3-ZrO2 Ceramics with Submicron Microstructures Obtained through Microwave Sintering, Plasma Sintering and Shock Compaction

Published online by Cambridge University Press:  15 February 2011

J. McKittrick
Affiliation:
University of California, San Diego, Materials Science Program, La Jolla, CA 92093
B. Tunaboylu
Affiliation:
University of California, San Diego, Materials Science Program, La Jolla, CA 92093
J. D. Katz
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
W. Nellis
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

Submicron and nanocrystalline grain sizes were achieved in the Al2O3-ZrO2 eutectic composition through conventional, microwave and plasma sintering of rapidly solidified starting powders and through shock compaction of commercial powders. Post sintering studies revealed nanocrystalline intragranular ZrO2 in the 1–2 μm Al2O3 grains, which is thought to be a result of the solidification synthesis. Additions of B2O3 greatly increased the final density through liquid phase sintering. Shock compression of commercial powders produced dense, crack-free, fine grained ceramics with loading pressures up to 9.1 GPa and a metastable ZrO2 phase under higher pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Garvie, R.C., Hannink, R.H. and Pascoe, R.T., Nature, 258 703704 (1975)CrossRefGoogle Scholar
[2] Dworak, U., Olapinski, H., Fingerli, D. and Krohn, U., Adv. in Ceram., eds. Claussen, N., Rtihle, M. and Heuer, A. H., The American Ceramic Society, Columbus, OH. 12 480487 (1983)Google Scholar
[3] Coes, L., Abrasives, (Springer-Verlag, New York, 1971), p. 6167 Google Scholar
[4] Claussen, N., J. Am. Ceram. Soc, 59 4951 (1976)CrossRefGoogle Scholar
[5] Lange, F. F., J.Mater.Sci., 17 247254 (1982)CrossRefGoogle Scholar
[6] Green, D.J., J.Am.Ceram.Soc., 65 610614 (1982)CrossRefGoogle Scholar
[7] Tsukuma, K., Ueda, K. and Shimada, M., J.Am.Ceram.Soc., 68 C4–C5 (1985)Google Scholar
[8] Hori, S., Kurita, R., Yoshimura, M. and Somiya, S., Adv. in Ceram., eds. Somiya, S., Yamamoto, N. and Yanagida, H., The American Ceramic Society, Columbus, OH. 24A 423429 (1986)Google Scholar
[9] Rühle, M., Strecker, A., Waidelich, D. and Kraus, B., Adv. in Ceram., eds. Claussen, N., Ruihle, M. and Heuer, A. H., The American Ceramic Society, Columbus, OH. 12 256274 (1983)Google Scholar
[10] Katz, J. D. and Blake, R. D., Am.Ceram.Soc.Bull, 70 [8] 13041308 (1991)Google Scholar
[11] Sutton, W.H., Am.Ceram.Soc.Bull, 68 [8] 376–86 (1984)Google Scholar
[12] Sawaoka, A.B., Ceramic Industrial Processing, eds. Muff, L.E., Staudhammer, K.P. and Meyers, M.A. (Marcel Dekker, Inc. Publishers, NY 1986) p. 221229 Google Scholar
[13] McKittrick, J., Kalonji, G. and Ando, T., J.Non-Cryst.Sol., 94 163171 (1987)CrossRefGoogle Scholar
[14] Jayaram, V., Levi, C., Whitney, T. and Mehrabian, R., Mat.Sci.Eng., A124 6581 (1990)CrossRefGoogle Scholar
[15] Gielisse, P.J.M. and Foster, W.R., Nature, 195 70 (1962)CrossRefGoogle Scholar
[16] Bengisu, M., Inal, O. and Hellman, J., J. Am. Ceram. Soc., 73 346 (1990)CrossRefGoogle Scholar