Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:10:54.284Z Has data issue: false hasContentIssue false

Aging Effects of As-deposited and Passivated Cobalt Slanted Columnar Thin Films

Published online by Cambridge University Press:  27 February 2012

Daniel Schmidt
Affiliation:
Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A.
Eva Schubert
Affiliation:
Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A.
Mathias Schubert
Affiliation:
Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A.
Get access

Abstract

Aging effects of as-deposited and passivated slanted columnar thin films from cobalt determined by generalized ellipsometry within the visible spectral region are reported. Slanted columnar thin films have been grown by glancing angle electron beam deposition and sub-sequently coated with Al2O3 by an atomic layer deposition process. An anisotropic Bruggeman effective medium approximation developed for highly ordered three dimensional metal nanostructures is employed to analyze spectroscopic Mueller matrix ellipsometry data. Our model approach allows for determination of biaxial optical and structural properties as well as fractions of multiple film constituents. While the optical properties of the uncoated film change over time, the alumina passivation layer prevents oxidation in air and therefore aging effects; however, it affects the intrinsic bulk-like Co optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Toader, O. and John, S., Science 292, 1133 (2001).Google Scholar
2. Kesapragada, S. V., Victor, P., Nalamasu, O., and Gall, D., Nano Lett. 6, 854 (2006).Google Scholar
3. Schmidt, D., Hofmann, T., Herzinger, C. M., Schubert, E., and Schubert, M., Appl. Phys. Lett. 96, 091906 (2010).Google Scholar
4. Knez, M., Nielsch, K., and Niinistö, L., Adv. Mater. 19, 3425 (2007).Google Scholar
5. Albrecht, O., Zierold, R., Allende, S., Escrig, J., Patzig, C., Rauschenbach, B., Nielsch, K., and Görlitz, D., J. Appl. Phys. 109, 093910 (2011).Google Scholar
6. Smith, G. B., Opt. Commun. 71, 279 (1989).Google Scholar
7. Granqvist, C. G., Bellac, D. L., and Niklasson, G. A., Renew. Energ. 8, 530 (1996).Google Scholar
8. Beydaghyan, G., Buzea, C., Cui, Y., Elliott, C., and Robbie, K., Appl. Phys. Lett. 87, 153103 (2005).Google Scholar
9. May, R. A., Flaherty, D. W., Mullins, C. B., and Stevenson, K. J., J. Phys. Chem. Lett. 1, 1264 (2010).Google Scholar
10. Wakefield, N. G., Sorge, J. B., Taschuk, M. T., Bezuidenhout, L. W., Brett, M. J., Sit, J. C., J.Opt Soc. Am. A 28, 1830 (2011).Google Scholar
11. Hofmann, T., Schmidt, D., Boosalis, A., Kühne, P., Skomski, R., Herzinger, C. M., Woollam, J. A., Schubert, M., and Schubert, E., Appl. Phys. Lett. 99, 081903 (2011).Google Scholar
12. Bruggeman, D. A. G., Ann. Physik (Leipzig) 24, 636 (1935).Google Scholar
13. Polder, D. and van Santen, J. H., Physica 12, 257 (1946).Google Scholar
14. Shivola, A., Electromagnetic Mixing Formulas and Applications, Electromagnetic Waves, Vol. 47 (The Institution of Electrical Engineers, London, 1999).Google Scholar
15. Thompkins, H. and Irene, E.A., eds., Handbook of Ellipsometry (William Andrew Publishing, Highland Mills, 2004).Google Scholar
16. Schubert, M., Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons, Springer Tracts in Modern Physics, Vol. 209 (Springer, Berlin, 2004).Google Scholar
17. Schmidt, D., Kjerstad, A. C., Hofmann, T., Skomski, R., Schubert, E., and Schubert, M., J. Appl. Phys. 105, 113508 (2009).Google Scholar
18. Wang, C.-C., Kei, C.-C., Yu, Y.-W., and Perng, T.-P., Nano Lett. 7, 1566 (2007).Google Scholar
19. Schmidt, D., Booso, B., Hofmann, T., Schubert, E., Sarangan, A., and Schubert, M., Appl. Phys. Lett. 94, 011914 (2009).Google Scholar
20. Schmidt, D., Booso, B., Hofmann, T., Schubert, E., Sarangan, A., and Schubert, M., Opt. Lett. 34, 992 (2009).Google Scholar
21. de Graef, M. and McHenry, M. E., Structure of Materials: An Introduction to Crystallogrpahy, Diffraction, and Symmetry (Cambridge University Press, Cambridge, 2007).Google Scholar
22. Steele, J. J., Taschuk, M., and Brett, M. J., IEEE Sens. J. 8, 1422 (2008).Google Scholar
23. Schmidt, D. et al. . (unpublished).Google Scholar