Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:24:56.983Z Has data issue: false hasContentIssue false

The Agglomeration of Point Defects in Transition Metal Monoxides

Published online by Cambridge University Press:  26 February 2011

E. Gartstein
Affiliation:
Galai, Industrial Zone, 10500 Migcal Haemek, Israel
M. Radler
Affiliation:
Northwestern University, Dept. of Materials Science & Engineering, The Technological Institute, Evanston, IL 60201
Get access

Abstract

Recent results on the diffuse scattering from single crystals of Fe1−xO at high temperatures reveal that the defect structure is in striking agreement with embedded cluster calculations by Ellis et al. The dominant defect is an imperfect 7:2 cluster. Mixtures of this and a larger complex (13:4) can explain the electrical properties. XANES studies of this oxide are in agreement with Ellis' theoretical work. However, in both FOx and MnxO it is not possible to use the shift of the cation K absorption edge to characterize valence. In fact in the latter case the shift passes through a minimum, perhaps indicating the onset of clustering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koch, F. andCohen, J. B. Acta ECryst., 25, 275 (1969).Google Scholar
2. Terauchi, H. andCohen, J. B. Acta Cryst., B35, 646 (1979).Google Scholar
3. Morinaga, M. andCohen, J. B. Acta Cryst., A32, 975 (1979).Google Scholar
4. Banus, M.D. and Reed, T. B. in The Chemistry of Extended Defects in Non-Metallic Solids, edited byEyring, L. and O'Keefe, M. (North Holland, New York, 1970), p. 488.Google Scholar
5. Kumarakrishnan, S., J. Phys. Chem. Solids, 46, 1007 (1985).Google Scholar
6. Hayakawa, M., Morinaga, M., and Cohen, J. B. in Defects and Transport in Oxides, edited by Seltzer, M. S. and Jaffee, R. J. (Plenum Press, New York, 1974), p. 177.Google Scholar
7. Catlow, C. R. A. and Fender, B.E.F. J. Phys. C: Solid State Phys., 8, 3267 (1975).Google Scholar
8. Grimes, R. W. Anderson, A. B. and Heuer, A. H. J. Solid State Chem., 55, 353 (1984).Google Scholar
9. Cheetham, A. K. Fender, B. E. F. andTaylor, R. I. J. Phys. C: Solid State Phys., 4, 2160 (1971).Google Scholar
10. Gavarri, J. R. Carel, C., and Weigel, D., J. Solid State Chem., 29, 81 (1979).Google Scholar
11. Battle, P. D. andCheetham, A. K. J. Phys. C: Solid State Phys., 12, 337 (1979).Google Scholar
12. Hong, T. T. Romanow, A., Shayowitch, Y. L. and Zvintchuk, R. A. Vestn. Leningr. Univ. Fiz. i. Khim., 1, #4, 144 (1973).Google Scholar
13. Lebreton, C., Ph.D. Thesis, Case Western Reserve University, 1982.Google Scholar
14. Kutzler, F. W. and Ellis, D. E. Phys. Rev. B., 29, 6890 (1984).Google Scholar
15. Chou, S. H. Guo, J., and Ellis, D. E. Phys. Rev. B., in press.Google Scholar
16. Ellis, D. E. Guenzburger, D., and Press, M. R. Intl. J. Quantum Chem., in press.Google Scholar
17. Gartstein, E., Mason, T. O. and Cohen, J. B. J. Phys. Chem. Solids, 47, 759 (1986).CrossRefGoogle Scholar
18. Hodge, J. D. and Bowen, K., J. Am. Cer. Soc., 64, 431 (1981).Google Scholar
19. Gartstein, E.,Cohen, J. B. and Mason, T. O. J. Phys. Chem. Solids, 47, 775 (1986).Google Scholar
20. Ovsyannikova, I. A. Batsanov, S. S. Nasonova, L. I. Batsonova, L. R. and Nekrasova, E. A. Bull. Acad. Sci. USSR, Phys. Ser., 31, 936 (1967).Google Scholar
21. Belli, M. Scafati, A., Bianconi, A, Mobilio, S. Palladino, L., Reale, A., and Burrattini, E., Solid State Comm., 35, 355 (1980).Google Scholar
22. Anderson, B. and Stetnes, J. O. Acta Crystallogr., A23, 268 (1977).Google Scholar