Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:45:40.112Z Has data issue: false hasContentIssue false

AFM and TEM Examination of Surface Grains in LPCVD Silicon Films

Published online by Cambridge University Press:  17 March 2011

Dave Kharas
Affiliation:
Dept. Materials Science, State University of New York in Stony Brook, Stony Brook, NY 11794-2275
R. J. Gambino
Affiliation:
Dept. Materials Science, State University of New York in Stony Brook, Stony Brook, NY 11794-2275
N. Golubovic-Liakopoulos
Affiliation:
Standard MEMS Inc. Hauppauge, NY 11788
Get access

Abstract

Polycrystalline silicon is an important technological material in microelectronics, and more recently in microelectromechanical systems (MEMS). For MEMS applications polysilicon films with residual tensile stress are often used, requiring film growth in the transition zone from 550-600°C. In this study polysilicon films were grown in a hot walled LPCVD reactor at 590°C to a thickness of 450 nm. The tensile as-deposited stress in the wafers was found to decrease with distance from the reactor front and served as a marker for the changing microstructure and surface roughness of the film as measured by Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). It was found that the surface contained a high density (≍30 /µm2) of grains that protruded 30 nm above the mean film surface. The size and volume of these grains increased linearly with decreasing stress until the surface saturated and became uniformly rough. The nature of these surface grains, their spatial characteristics, and their annealing behavior is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Joubert, P., Loisel, B., Chouan, Y., and Haji, L., J. Electrochem. Soc. 134 (10), 25412545 (1987).Google Scholar
2. Bisaro, R., Magarino, J., Proust, N., and Zellama, K., J. Appl. Phys. 59 (4), 11671178 (1986).Google Scholar
3. , Voutsas and Hatalis, M., J. Electrochem. Soc. 139 (9), 26592665 (1992).Google Scholar
4. Krulevitch, P., Nguyen, T., Johnson, G., Howe, R., Wenk, H., and Gronsky, R., Mat. Res. Soc. Symp. Proc. 202, 167172 (1991).Google Scholar
5. Huang, J., Krulevitch, P., Johnson, G., Howe, R., and Wenk, H., Mat. Res. Soc. Symp. Proc. 182, 201206 (1990).Google Scholar
6. , Temple-Boyer, Mauduit, B., Caussat, B., and Couderc, J., J. Phys. IV Pr8, 11071114 (1999).Google Scholar
7. Bloem, J. and Beers, A., Thin Solid Films 124, 93101 (1985).Google Scholar
8. Caussat, B., Couderc, J., Vasquez, L., Figueras, A., Lee, A. Vander, Cot, D., Durand, J., Paillard, V., Scheid, E., Mauduit, B., Vila, A., and Morante, J., Solid State Phenom. 67–68, 125130 (1999).Google Scholar
9. Mansoori, M., Banerjee, A., Shimizu, A., Mori, Y., Wise, R., Pas, M., and Chatterjee, B., J. Electrochem. Soc. 146 (10), 38273832 (1999).Google Scholar
10. Chan, A., Nguyen, C., Ko, P., Chan, S., and Wong, S., IEEE Trans. On Electr. Dev. 44 (3), 455463 (1997).Google Scholar
11. Heimann, P., Murarka, S., and Sheng, T., J. Appl. Phys. 53 (9), 62406245 (1982).Google Scholar
12. , Suzuki, Sensors and Actuators 79, 141146 (2000).Google Scholar
13. Nasby, R., Sniegowski, J., Smith, J., Montagu, S., Barron, C., Eaton, W., McWhorter, P., Hetherington, D., Apblett, C., and Fleming, J., Solid State Actuator Workshop June (1996).Google Scholar
14. Roy, S., Furukawa, S., and Mehregany, M., J. Electrochem. Soc. 144 (10), 35893592 (1997).Google Scholar
15. Kim, J., Lee, J., and Nam, K., J. Appl. Phys. 79 (3), 17941800 (1996).Google Scholar
16. Ibok, E. and Garg, S., J. Electrochem. Soc. 140 (10), 29272937 (1993).Google Scholar
17. , Hegde, Paulson, W., and Tobin, P., J. Vac. Sci., Technol. B. 13 (4), 14341441 (1995).Google Scholar
18. , Basa and Irene, E. A., J. Vac. Sci. Technol. A. 16 (4), 24662479 (1998).Google Scholar
19. Stoney, G. G., Proc. Roy. Soc. London A82, 172 (1909).Google Scholar