Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:35:29.809Z Has data issue: false hasContentIssue false

Advances in Crystallographic Image Processing for Scanning Probe Microscopy: Unambiguous identification of the translation symmetry of a 2D periodic image

Published online by Cambridge University Press:  04 June 2014

Taylor T. Bilyeu
Affiliation:
Nano-Crystallography Group, Department of Physics, Portland State University, Portland, OR 97207-0751, U.S.A
Jack C. Straton
Affiliation:
Nano-Crystallography Group, Department of Physics, Portland State University, Portland, OR 97207-0751, U.S.A
Axel Mainzer Koenig
Affiliation:
Nano-Crystallography Group, Department of Physics, Portland State University, Portland, OR 97207-0751, U.S.A
Peter Moeck*
Affiliation:
Nano-Crystallography Group, Department of Physics, Portland State University, Portland, OR 97207-0751, U.S.A
*
*corresponding author’s email: pmoeck@pdx.edu
Get access

Abstract

A statistically sound procedure for the unambiguous identification of the underlying Bravais lattice of an image of a 2D periodic array of objects is described. Our Bravais lattice detection procedure is independent of which type of microscope has been utilized for the recording of the image data. It is particularly useful for the correction of Scanning Tunneling Microscope (STM) images that suffer from a blunt scanning probe tip artifact, i.e. simultaneously recording multiple mini-tips. The unambiguous detection of the type of translation symmetry presents a first step towards making objective decisions about which plane symmetry a 2D periodic image is best modeled by. Such decisions are important for the application of Crystallographic Image Processing (CIP) techniques to images from Scanning Probe Microscopes (SPMs).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moeck, P., Toader, M., Abdel-Hafiez, M., and Hietschold, M., in Frontiers of Characterization and Metrology for Nanoelectronics, edited by D. G. Seiler et al., American Institute of Physics Conference Proceedings Series 1173, Melville, New York, 2009, pp. 294298.Google Scholar
Moeck, P., Straton, J., Toader, M., and Hietschold, M., Mater. Res. Soc. Symp. Proc. 1318, 149 (2011), doi:10.1557/opl.2011.278.CrossRefGoogle Scholar
Moeck, P., in Microscopy: Science Technology, Applications and Education, Microscopy Book Series No. 4, Vol. 3, pp. 1951–1962, A. Méndez-Vilas and J. Diaz (editors), Formatex Research Center, 2010, ISBN (13): 978-84-614-6191-2, open access: http://www.formatex.info/microscopy4/1951-1962.pdf.Google Scholar
Moeck, P., Straton, J., Hipps, K. W., Bilyeu, T., Rabe, J.-P., Mazur, U., Hietschold, M., Toader, M., Proc. 11th IEEE International Conference on Nanotechnology, August 15-18, 2011, Portland, Oregon, USA, pp. 891–896. doi: 10.1109/NANO.2011.6144508.CrossRefGoogle Scholar
Bilyeu, T., Moon, B. Jr., Moeck, P., Microsc. Microanal. 18 (Suppl. 2) 934 (2012), doi: http://dx.doi.org/10.1017/S1431927612006526.CrossRefGoogle Scholar
Straton, J. C., Bilyeu, T. T., Moon, B., and Moeck, P., Cryst. Res. Technol., special issue “Advances in Structural and Chemical Imaging”, first publ. on line: 18 Feb. 2014, DOI: 10.1002/crat.201300240.CrossRefGoogle Scholar
Straton, J. C., Bilyeu, T. T., Moon, B., and Moeck, P., IEEE Transactions in Image Processing, 2014, in press .Google Scholar
Zou, X. and Hovmöller, S., in Industrial Applications of Electron Microscopy, Edited by Z. R. Li (Marcel (Dekker Inc., 2003), pp. 583–614. Google Scholar
Hahn, T. (Ed.), Brief Teaching Edition of Volume A, Space-group symmetry, International Tables for Crystallography, 5th revised ed., International Union of Crystallography (IUCr), Chester 2005.Google Scholar
Triono, I., Ohta, N., and Kanatani, K., IEICE Trans. Inf. & Syst. E81-D, 224 (1998).Google Scholar
Kanatani, K., Int. J. Computer Vision 26, 171 (1998).CrossRefGoogle Scholar
Bevington, P. R. and Robinson, D. K., Data Reduction and Error Analysis for the Physical Sciences, 3 rd ed., McGraw-Hill, 2003, p. 41.Google Scholar
Mazur, U., Leonetti, M., English, W., and Hipps, K. W., J. Phys. Chem. B 108, 17003 (2004).CrossRefGoogle Scholar
Hovmöller, S., Ultramicroscopy 41, 121 (1992).CrossRefGoogle Scholar
Iski, E. V., Jewell, A. D., Tierney, H. L., Kyriakou, G., and Sykes, E. C. H., J. Vac. Sci. Technol. A 29, 040601 (2011).CrossRefGoogle Scholar
Verberck, B., Symmetry 4, 379 (2012).CrossRefGoogle Scholar