Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:37:11.286Z Has data issue: false hasContentIssue false

Advanced Photocatalysis with Anatase Nano-coated Multi-walled Carbon Nanotubes

Published online by Cambridge University Press:  15 February 2011

Georgios Pyrgiotakis
Affiliation:
Materials Science and Engineering, University of Florida RHN 225, Gainesville, FL, 326011, USA
Sung-Hwan Lee
Affiliation:
Materials Science and Engineering, University of Florida RHN 225, Gainesville, FL, 326011, USA
Wolfgang Sigmund
Affiliation:
Materials Science and Engineering, University of Florida RHN 225, Gainesville, FL, 326011, USA
Get access

Abstract

A novel approach is presented to synergistically enhance photocatalytic activity in a nanocomposite using the high aspect ratio of carbon nanotube (CNT) and their unique electrical properties. Composite nanoparticles were synthesized with sol-gel nano-coating on multi-walled carbon nanotubes (MWNTs). The nanostructure was characterized using SEM, TEM, XRD, Raman, FTIR and UV-VIS spectroscopies. Photocatalytic efficiencies of commercial photocatalysts (Degussa P25) and TiO2 nano-coated MWNTs were evaluated by Azo dye degradation tests. Superior photocatalytic activity was observed for the nanocomposite with UV-A and with visible light only irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fujishima, A and Honda, K. Nature, 37, 238, (1972).Google Scholar
2 Muscat, Joseph, Swamy, Varghese, and Harrison, Nicholas M.. Phys. Rev. B, 65 (22) 1, (2002).Google Scholar
3 Mo, Shang-Di and Ching, W. Y. Phys. Rev. B, 51(19) 13023, (1995).Google Scholar
4 Glassford, K. M. and Chelikowsky, James R., Phys. Rev. B, 46(3), (1992).Google Scholar
5 Ulrike Diebold Surf. Sience Rep., 48, 53, (2003).Google Scholar
6 Martin, S. T.; Herrmann, H.; Choi, W.; Hoffmann, M. R. Trans. Faraday Soc., 90, 3315, (1994).Google Scholar
7 Martin, S. T.; Herrmann, H.; Hoffmann, M. R. Trans. Faraday. Soc. 90, 3323, (1994).Google Scholar
8 Linsebigler, A. L., Lu, G., and Yates, J. T. Jr, Chemical Review 95, 735, (1995).Google Scholar
9 Iijima, S., Nature, 354, 56 (1991).Google Scholar
10 Iijima, S., Ichihashi, T., Nature, 363, 603 (1993).Google Scholar
11 Bethune, D. S. Kiang, C. H. de Vires, M. S. Gorman, G., Savoy, R., Vazques, J., Beyers, R., Nature, 363, 605 (1993).Google Scholar
12 Mintmire, J. W. Dunlap, B. I. Carter, C. T. Phys. Rev. Lett. 68, 631 (1992).Google Scholar
13 Hamada, N, Sawada, S., Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
14 Fujishima, A., Rao, T. N., Tryk, D. A.. Journal of Photochemistry and Photobiology C, 1, 1, (2000).Google Scholar
15 Doushita, K., Kawahara, T., Journal of Sol-Gel Science and Technology 22, 91, (2001).Google Scholar
16 So, C.M., Cheng, M.Y., Yu, J.C., Wong, P.K., Chemosphere 46, 905, (2002).Google Scholar
17 Lee, Sung-Hwan, Pumprueg, Smithi, Moudgil, Brij, Sigmund, Wolfgang, Colliods and Surfaces B, 40, 93, 2005 Google Scholar
18 Chen, C.-W. and Lee, M.-H., Nanotechnology 15, 480 (2004).Google Scholar
19 Lide, David R. (Editor in Chief), Handbook of Chemistry and Physics, 81st Edition, 12130, 2000-2001.Google Scholar
20 Lide, David R. (Editor in Chief), Handbook of Chemistry and Physics, 81st Edition, 10147, 2000-2001.Google Scholar
21 Kim, Changwook, Kim, Bongsoo, PHYSICAL REVIEW B, 65, 165418, (2002).Google Scholar
22 Chen, Chun-Wei, Lee, Ming-Hsien, Nanotechnology, 15, 480484, (2004).Google Scholar