Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T18:55:50.813Z Has data issue: false hasContentIssue false

The Adsorption of Humic Acids and Europium-Humate Colloids Onto Repository Components: Boom Clay, Bentonite, and Fe2O3

Published online by Cambridge University Press:  10 February 2011

Jiang Wei*
Affiliation:
Pierre Van Iseghem and Lian Wang SCK/CEN, Boeretang 200, B-2400 Mol, Belgium
Get access

Abstract

Batch sorption experiments were carried out to investigate the adsorption of humic acids (HA) and Eu-humate colloids onto repository components: Boom clay, bentonite and Fe2O3 as a function of pH. The concentration of humic acids is 150 mg/l and the bulk concentration of Eu is 10−6 M. Radioactive 152Eu was used as a tracer. The adsorption of humic acids onto bentonite and Fe2O3 decreased with increasing pH. Humic acids were probably complexed to Al/Fe sites on the adsorbents through COOH and phenolic OH groups. It is difficult to interpret the adsorption of humic acids onto Boom clay because Boom clay itself contains high content of organic matters. The adsorption of Eu-humate colloids onto repository components were performed near neutral pH conditions. Eu was strongly adsorbed by three adsorbents, and pH had little effect on the adsorption in the neutral pH range. The strong complexation of Eu with humic acids did not prevent Eu from being adsorbed. Eu is likely bound to solid surfaces via humic acids. The adsorption of Eu-humate colloids onto mixed adsorbents (Boom clay + bentonite, Boom clay + Fe2O3, bentonite + Fe2O3, and Boom clay + bentonite + Fe2O3) was investigated. Most of Eu-humate colloids was adsorbed by the mixed adsorbents. The desorption of humic acids and Eu from repository components was also examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Henrion, P. N., Monsecour, M., Fonteyne, A., Put, M. and Regge, P. De, Radioactive Waste Management and The Nuclear Fuel Cycle, 6(3-4), pp. 313357 (1985).Google Scholar
2 Choppin, G. R., Radiochimica Acta 58/59, pp. 113120 (1992).Google Scholar
3 Kim, J. I., Delakowitz, B., Zeh, P., Klotz, D. and Lazik, D., Radiochimica Acta 66/67, pp. 165171 (1994).Google Scholar
4 Nelson, D. N., Jackson, W. R., Kaltunen, J. O. and Mehlhaf, P., Environ. Sci. Technol. 19, pp. 127131 (1985).Google Scholar
5 McCarthy, J. F., and Zachara, J. M., Environ. Sci. Technol. 23, pp. 496504 (1989).Google Scholar
6 Moulin, V. and Stammose, D., Mat. Res. Soc. Smyp. Proc. 127, pp. 723727 (1989).Google Scholar
7 Ho, C. H., and Miller, N. H., Journal of Colloid and Interface Science 106(2), pp. 281288 (1985).Google Scholar
8 Davis, J. A., Geochimica et Cosmochimica Acta 46, pp. 23812393 (1982).Google Scholar
9 Murphy, E. M., Zachara, J. M. and Smith, S. C., Environ. Sci. Technol. 24, pp. 15071516 (1990).Google Scholar
10 Righetto, L., Bidoglio, G., Azimonti, G., and Bellibono, I. R., Environ. Sci. Technol. 25, pp. 19131919 (1991).Google Scholar
11 Ned, M.6n, Ephraim, J. H. and Allard, B., Radiochimica Acta 65, pp. 265270 (1994).Google Scholar
12 Labonne, N., Moulin, V. and Stammose, D., Mat. Res. Soc. Symp. Proc. 257, pp. 307314 (1992).Google Scholar
13 Tipping, E., Geochimica et Cosmochimica Acta 45, pp. 191199 (1981).Google Scholar
14 Schulthess, C. P. and Huang, C. P., Soil Sci. Soc. Am. J. 55, pp. 3442 (1991).Google Scholar
15 Gu, B., Schmitt, J., Chen, Z., Liang, L. and McCarthy, J. F., Environ. Sci. Technol. 28, pp. 3846 (1994).Google Scholar
16 Jardine, P. M., Weber, N. L. and McCarthy, J. F., Soil Sci. Soc. Am. J. 53, pp. 13781385 (1989).Google Scholar
17 Lockhart, N. C., Clay and Clay Minerals 29(6), pp. 413422 (1981).Google Scholar
18 Greenland, D. J., Soil Science 111(1), pp. 3441 (1966).Google Scholar
19 Schnitzer, M. and Kodama, H., Science, 153, pp. 7071 (1966).Google Scholar
20 Wei, J. and Van, P. Iseghem, Mat. Res. Soc. Symp. Proc. 465, pp. 189196 (1997).Google Scholar
21 Wei, J. and Van Iseghem, P., Mat. Res. Soc. Symp. Proc. 465, pp. 269276 (1997).Google Scholar
22 Kim, J.I, Delakowitz, B., Zeh, P., Probst, T., Lin, X., Ehrlicher, U., Schauer, C., Ivanovich, M., Longworth, G., Hasler, S. E., Gardiner, M., Fritz, P., Klotz, D., Lazik, D., Wolf, M., Geyer, S., Alexander, J.L, Reed, D., Thomas, J.B, EUR16754 (1996).Google Scholar
23 Sakamoto, Y., Nagao, S., Ohnuki, T., Senoo, M., Ohashi, A., Sato, S. and Ohashi, H., Mat. Res. Soc. Symp. Proc. 353, pp. 9971004 (1995).Google Scholar
24 Xu, H., Ephraim, J., Ledin, A. and Allard, B., The Science of the Total Environment 81/82, pp. 653660 (1989).Google Scholar
25 Wang, L., Maes, A., De, P. Canni~re, unpublished results.Google Scholar
26 Carlsen, L., Lassen, P., Warwick, P. and Mat, A.. Res. Soc. Symp. Proc. 294, pp. 811816 (1993).Google Scholar
27 Moulin, V., Stammose, D. and Ouzounian, G., Applied Geochemistry, Suppl. Issue 1, pp. 163166 (1992).Google Scholar
28 Degueldre, C., Ulrich, H. J. and Silby, H., Radiochimica Acta 65, pp. 173179 (1994).Google Scholar
29 Choppin, G. R., Radiochimica Acta 44/45, pp. 2328 (1988).Google Scholar