No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
Amelogenins are hydrophobic proteins that constitute more than 90% of the secretory stage enamel matrix. The assembly of amelogenin into nanospheres has been postulated to be a key factor in controlling the structural organization of the enamel extracellular matrix framework, which provides the scaffolding for the elongated and oriented growth of enamel apatite crystals. To get insight into the structure and function of amelogenin in controlling the process of crystal growth we have utilized two different approaches to investigate adsorption of amelogenin nanospheres onto charged surfaces: A) analysis of adsorption of amelogenin onto hydroxyapatite crystals by means of Langmuir Model for protein adsorption. B) analysis of amelogenin mono or multi-layer formation by sequential adsorption process onto auto-assembled polyelctrolytes films. Our data indicate that amelogenin nanospheres adsorb onto the surface of apatite crystals as binding units with defined adsorption sites. We found that amelogenin nanospheres are negatively charged and a monolayer of these nanospheres adsorbed in an irreversible way on positively ending polyelectrolyte multilayers most likely through electrostatic interactions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.