Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T00:51:39.994Z Has data issue: false hasContentIssue false

Actinide Complexation with Biomimetic Phosphorylated Molecules

Published online by Cambridge University Press:  22 May 2012

Samir Safi
Affiliation:
Institut de Physique Nucléaire Orsay, Université Paris XI Orsay, 91405 Orsay, France CEA Marcoule, Nuclear Energy Division, DRCP, 30207 Bagnols sur Cèze, France
Marie Christine Charbonnel
Affiliation:
CEA Marcoule, Nuclear Energy Division, DRCP, 30207 Bagnols sur Cèze, France
Gaelle Creff
Affiliation:
Institut de Physique Nucléaire Orsay, Université Paris XI Orsay, 91405 Orsay, France CEA Marcoule, Life Science Division, iBEB/SBTN, 30207 Bagnols sur Cèze, France
Aurélie Jeanson
Affiliation:
Institut de Physique Nucléaire Orsay, Université Paris XI Orsay, 91405 Orsay, France
Sarah Mostapha
Affiliation:
CEA Marcoule, Nuclear Energy Division, DRCP, 30207 Bagnols sur Cèze, France
Jerome Roques
Affiliation:
Institut de Physique Nucléaire Orsay, Université Paris XI Orsay, 91405 Orsay, France
Eric Simoni
Affiliation:
Institut de Physique Nucléaire Orsay, Université Paris XI Orsay, 91405 Orsay, France
Pier Solari
Affiliation:
Synchrotron SOLEIL, MARS beam line, 91192 Gif sur Yvette, France
Claude Vidaud
Affiliation:
CEA Marcoule, Life Science Division, iBEB/SBTN, 30207 Bagnols sur Cèze, France
Christophe Den Auwer
Affiliation:
CEA Marcoule, Nuclear Energy Division, DRCP, 30207 Bagnols sur Cèze, France University of Nice Sophia Antipolis, Nice Chemistry Institute, 06108 Nice, France
Get access

Abstract

Most data available on the interaction of actinides with biological systems are based on physiological or biokinetic measurements, with scarce information on the structure of the actinide coordination site. This proceeding article describes an approach for structural elucidation of actinide biological complexes. Indeed most of c.a. actinide circulation pathways are unknown, as they accumulate mostly in bones, kidney and liver. In case of accidental release of radionuclide in the environment, internal contamination under either acute or chronic conditions has the potential to induce both radiological and chemical toxicity through significant interaction with the metabolome or proteome followed by possible functional modifications. For instance, the metalloproteins present primary, secondary and tertiary structures, and also different post-translational modifications, all playing a crucial role in interacting with their partners, which can be altered by actinide bonding. When tightly bound, metal ions are critical to the function, structure, and stability of the proteins, by disabling specific interactions through significant local or global conformational modifications. In order to overcome the intricacy of actinide chemistry combined with that of metalloproteins, a simplified study toward better understanding the interaction of actinides and biological systems using simple biomolecules such as amino acids has therefore been considered. Focus is made on the cation coordination site itself, given that conformational effects are not taken into account in this approach. In a first step, we have selected simple phosphorylated building blocks that may be considered as chemical representatives of some ubiquitous target metalloproteins or some important phosphorylated peptides or proteins.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Durbin, P.W., Actinides in animals and man, the chemistry of actinide and transactinide elements Vol. 5 pp 3339.Google Scholar
2. Breitenstein, B.D. and Palmer, H.E., Radiat. Prot. Dosim., 26 (1989) 317.Google Scholar
3. Hill, A.R. Jr., Orgel, L.E., Bioconjugate Chem. 2 (1991) 431 Google Scholar
4. Dedieu, A., Bérenguer, F., Basset, C., Prat, O., Quéméneur, E., Pible, O., Vidaud, C., Journal of Chromatography A, 1216 (2009) 5365.Google Scholar
5. Terra, O., Dacheux, N., Clavier, N., Podor, R., Audubert, F., J. Am. Cer. Soc. 91 (2008) 3673.Google Scholar
6. Gunther, A., Geipel, G., Bernhard, G., Radiochim. Acta 94 (2006) 845.Google Scholar
7. Szabo, I. Furo, I. Csoregh, J. Am. Chem. Soc. 127 (2005) 15236 Google Scholar
8. Agarwal, R.P., Feldman, I., J.Am. Chem. Soc. 90 (1968) 6635.Google Scholar
9. Andreev, G., Budantseva, N., Sokolova, M., Tananaev, I., Myasoedov, B., Inorg.Chem. 48 (2009) 2343.Google Scholar
10. Frisch, M. J. and al. gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, (2004).Google Scholar
11. Becke, A. D. J., Chem. Phys. 98 (1993) 5648.Google Scholar
12. Kuchle, W., Dolg, M., Stoll, H., Preuss, H. J Chem Phys 100 (1994) 7535.Google Scholar
13. Barone, V., Cossi, M., J Phys Chem A 102 (1998) 199.Google Scholar
14. Sitaud, B., Solari, P. L., Schlutig, S., Llorens, I., Hermange, H., J.Nucl. Materials, (2012) in press.Google Scholar
15. Solari, P. L., Schlutig, S., Hermange, H., Sitaud, B., Proceedings of the 14th International Conference On X-Ray Absorption Fine Structure (Xafs14), J Phys Conf, 190 (2009) 012042.Google Scholar
16. Ravel, B. and M. J. Newville Synch. Rad. 12 (2005) 537.Google Scholar
17. Rehr, J. J., Albers, R. C., Rev. Mod. Phys., 2000, 72, 621.Google Scholar
18. Cimas, A., Maitre, P., Ohanessian, G., Gaigeot, M-P., J. Chem. Theory Comput. 5 (2009), 2388.Google Scholar
19. Brandel, V., Dacheux, N., Genet, M., Podor R, R.., J. Solid State Chem., 159 (2001), 139.Google Scholar
20. Kelly, S. D., Kemner, K. M., Fein, J. B., Fowle, D. A., Boyanov, M. I., Bunker, B. A. and Yee, N., Geochim. Cosmochim. Acta 66 (2002) 3855.Google Scholar
21. Glowiak, T., Huskowska, E., Legendziewicz, J., Polyhedron 10 (1991), 175.Google Scholar
22. Tajmir-riahi, H.A., Theophanides, T., Inorg. Chim.Acta, 80 (1983) 183 Google Scholar
23. Tajmir-Riahi, H.A., Biopolymers 31 (1991) 1065.Google Scholar