Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T20:08:54.076Z Has data issue: false hasContentIssue false

Zinc Oxide Nanowire Based Piezoelectric Nano Generators Grown on Flexible Substrates

Published online by Cambridge University Press:  17 July 2013

M. Y. Soomro
Affiliation:
Linköping University, Department of Science and Technology, SE-601 74 Norrköping, Sweden
O. Nur
Affiliation:
Linköping University, Department of Science and Technology, SE-601 74 Norrköping, Sweden
M. Willander
Affiliation:
Linköping University, Department of Science and Technology, SE-601 74 Norrköping, Sweden
Get access

Abstract

Flexible substrates, like plastic, paper and cotton fabrics can be of interest for several reasons in connection to the appealing issue of generating voltage-current from piezoelectric ZnO nanowires (NWs). Zinc oxide NWs have shown very high voltage generation and they are possible to grown on plastic, paper and cotton. Since we with these substrates can get a new freedom to bend and also stretch the NWs and to incorporate them into new applications they are of great potential. Here we will describe the mechanical and piezoelectric properties of ZnO NWs grown on ordinary clean room paper and on cotton fabrics substrates as well as possibility of coating the ZnO NWs to maximize the output generated power. An enhancement of 160 times in the piezo-potential was observed from ZnO NWs coated with P3HT p-type polymer compared to non-coated NWs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Soomro, M. Y., Hussain, I., Bano, N., Nur, O., Willander, M., Phys. Stat. Sol. RRL 6, 80 (2012).CrossRefGoogle Scholar
Khan, A., Abbasi, M. A., Hussain, M., Ibupoto, Z. H., Wissting, J., Nur, O., Willander, M., Appl. Phys. Lett. 101, 193506 (2012).CrossRefGoogle Scholar
Bano, N., Zaman, S., Zainelabdin, A., Hussain, S., Hussain, I., Nur, O., and Willander, M., J. Appl. Phys. 108, 043103 (2010).CrossRefGoogle Scholar
Corso, A. D., Posternak, M., Resta, R., Balderschi, A., Phys. Rev. B 50, 10715 (1994).CrossRefGoogle Scholar
Chiang, Y. F., Sung, C.C., Ro, R., Appl. Phys. Lett. 96, 154104 (2010).CrossRefGoogle Scholar
Xi, Y., Song, J., Xu, S., Yang, R., Gao, Z., Hu, C., Wang, Z. L., J. Mater. chem. 19, 9260 (2009).CrossRefGoogle Scholar
Yu, A., Li, H., Tang, H., Liu, T., Jiang, P, Wang, Z. L., Phys. Status Solidi RRL 5, 162 (2011).CrossRefGoogle Scholar
Wang, Z. L., Adv. Funct. Mater. 18, 3553 (2008).CrossRefGoogle Scholar
Lu, M. P., Song, J., Lu, M. Y., Chen, M. T., Gao, Y., Chen, L. J., Wang, Z. L., Nano Lett. 9, 1223 (2009).CrossRefGoogle Scholar
Minne, S. C., Manalis, S. R., and Quate, C. F., Appl. Phys. Lett. 67, 3918 (1995).CrossRefGoogle Scholar
Choi, J. R. and Polla, D., J. Micromech. Microeng. 3, 60 (1993).CrossRefGoogle Scholar
Uchino, K., Smart Mater. Structure, 7, 273 (1998).CrossRefGoogle Scholar
Soomro, M.Y., Hussain, I., Bano, N., Hussain, S., Nur, O., Willander, M., Appl. Phys. A 106, 151 (2012).CrossRefGoogle Scholar
Fei, P., Yeh, P. H., Zhou, J., Xu, S., Gao, Y., Song, J., Gu, Y., Huang, Y. and Wang, Z. L., Nano Lett. 9, 3435 (2009).CrossRefGoogle Scholar
He, J. H., Hsin, C. L., Liu, J., Chen, L. J. and Wang, Z. L., Adv. Mater. 19, 781 (2007).CrossRefGoogle Scholar
Zhou, J., Fei, P., Gao, Y., Gu, Y., Liu, J., Bao, G. and Wang, Z. L., Nano Lett. 8, 2725 (2008).CrossRefGoogle Scholar
Liu, J., Fei, P., Zhou, J., Tummala, R., and Wang, Z. L., Appl. Phys. Lett. 92, 173105 (2008).CrossRefGoogle Scholar
Gao, Y. and Wang, Z. L., Nano Lett. 9, 1103 (2009).CrossRefGoogle Scholar
Mantini, G., Gao, Y., D’Amico, A., Falconi, C., Wang, Z. L., Nano Res. 2, 624 (2009).CrossRefGoogle Scholar
Service, R. F., Science 328, 304 (2010).CrossRefGoogle Scholar
Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U. and Rodina, A. V., Phys. Stat. Sol. b 241, 231 (2004).CrossRefGoogle Scholar
Lee, K. Y., Kumar, B., Seo, J. S., Kim, K. H., Sohn, J. I., Cha, S. N., Choi, D., Wang, Z. L., and Kim, S. W., Nano Lett. 12, 1959 (2012).CrossRefGoogle Scholar