Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T12:05:04.460Z Has data issue: false hasContentIssue false

Wet-Chemical Synthesis of ZnTe Quantum Dots

Published online by Cambridge University Press:  01 February 2011

Jun Zhang
Affiliation:
jfang1@uno.edu, UNIVERSITY OF NEW ORLEANS, CHEMISTRY, 2000 LAKESHORE DR, NEW ORLEANS, LA, 70148, United States
Zhaoyong Sun
Affiliation:
zsun1@binghamton.edu, Binghamton University, Department of Chemistry, Binghamton, NY, 13902-6000, United States
Jiye Fang
Affiliation:
jfang@binghamton.edu, Binghamton University, Department of Chemistry, Binghamton, NY, 13902-6000, United States
Get access

Abstract

ZnTe quantum dots (QDs) have been very attractive because of their potential applications in optoelectronic devices operating in the blue-green region of the spectrum. This paper describes a convenient one-step synthesis of high-quality ZnTe QDs in high-temperature organic solution with high yield. Anhydrous zinc chloride was dissolved in phenyl ether under argon protection and oleic amine was used as coordinating agent. Complex solution of metal tellurium in trioctylphosphine (TOP) was injected into the hot reaction mixture as a source of tellurium. The reaction was complete in several minutes and the resulting QDs were isolated by centrifugation and re-dispersed in hexane. The produced spherical ZnTe QDs are monodispersed and their sizes could be controlled simply by varying the growth temperature. The morphology and phase structure were investigated using TEM and XRD. Photoluminescence (PL) spectra were also studied and quantum size effects were observed as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 (a) Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993); (b) X. Peng, L. Manna, W. Yang, J. Wickham, E.Scher, A. Kadavanich, A. P. Alivisatos, Nature 404, 59 (2000); (c) L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000); (d) Z. A. Peng and X. Peng, J. Am. Chem. Soc. 124, 3343 (2002); (e) L. Manna, D. J. Milliron, E. C. Scher, A. P. Alivisatos, Nat. Mater. 2, 382 (2003); (f) D. J. Milliron, S. M. Hughes, Y. Cui, L.; Manna, J. Li, L.-W. Wang, A. P. Alivisatos, Nature 430, 190 (2004); (g) X. Peng, Chems Eur. J. 8, 335 ( 2002); (h) A. P. Alivisatos, Science 271, 933 (1996); (i) C. B. Murray, C. R. Kagan, M. G. Bawendi, Science 270, 1335 (1995); (j) S. Kim, B. R. Fisher, H.J. Eisler, M. G. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003); (k) D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett. 1, 207 (2001).Google Scholar
2 (a) Crowder, B. L., Morehead, F. F., Wagner, P. R., Appl. Phys. Lett. 8, 148 (1966); (b) I. K. Sou, K. S. Wong, Z. Y. Yang, H. Wang, G. K. L. Wong, Appl. Phys. Lett. 66, 1915 (1995).Google Scholar
3 Jun, Y.W., Choi, C.S., J. Cheon, Chem. Commun. 101 (2001).Google Scholar
4 Resch, U., Weller, H., Henglein, A., Langmuir 5, 1015 (1989).Google Scholar
5 Li, Y., Ding, Y., Wang, Z., Adv. Mater. 11, 847 (1999).Google Scholar
6 Xie, R., Zhong, X., Basché, T., Adv. Mater. 17, 2741 (2005).Google Scholar
7 Murray, C. B., Kagan, C. R., Bawendi, M. G., Annu. Rev. Mater. Sci. 30, 545 (2000).Google Scholar
8 Qian, C., Kim, F., Ma, L., Tsui, F., Yang, P., Liu, J., J. Am. Chem. Soc. 126, 1195 (2004).Google Scholar
9 Lu, W., Gao, P., Jian, W. B., Wang, Z. L., Fang, J., J. Am. Chem. Soc. 126, 14816 (2004).Google Scholar
10 Liu, Q., Lu, W., Ma, A., Tang, J., Lin, J., Fang, J., J. Am. Chem. Soc. 127, 5276 (2005).Google Scholar
11 Li, L., Yang, Y., Huang, X., Li, G., Zhang, L., J. Phys. Chem. B, 109, 12394 (2005).Google Scholar