Published online by Cambridge University Press: 15 February 2011
Durability of metal/polyimide (PI) interfaces is essential for the long term reliability of advanced microelectronics packages. In earlier work, we showed that water absorbed by the PI can affect durability because, at high temperatures, it migrates to the interface and oxidizes the metal. In this study, we have investigated water transport through PMDA-ODA and BPDA-PDA polyimides as a function of ion beam treatment. Thermal desorption mass spectrometry (TDS) and gravimetric water uptake measurements were correlated with XPS spectra obtained from modified films. Transport through films with unmodified surfaces is rapid as shown by water uptake, however uptake is slowed considerably by surface modification. Additionally, only modified films exhibit peaks in TDS spectra–the peak temperature and intensity scale with dose. High resolution XPS spectra taken after modification suggest a graphitic-like surface region independent of dose. However, the extent of this “damaged” region scales with the dose. From the TDS spectra, we determine that the activation energy for water diffusion through this layer is 12–15 kcal/mol.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.