Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:23:44.279Z Has data issue: false hasContentIssue false

Vacuum Foaming of Aluminum Scrap

Published online by Cambridge University Press:  18 December 2012

J. A. Garabito*
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U” Ciudad Universitaria, Morelia, Mich., México.
H. Granados
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U” Ciudad Universitaria, Morelia, Mich., México.
V. H. López
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U” Ciudad Universitaria, Morelia, Mich., México.
A. R. Kennedy
Affiliation:
Faculty of Engineering, University of Nottingham, University Park, NG72RD, UK.
J. E. Bedolla
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U” Ciudad Universitaria, Morelia, Mich., México.
Get access

Abstract

In this study, scrap from the automotive industry was used to produce aluminium foams under vacuum. Chips of an aluminium alloy LM26 were melted and 1wt. % of Mg was added for creating a viscous casting with uniform distribution of oxides. An ingot was obtained of this alloy after casting and solidification. Trials for foaming this alloy were performed by re-melting pieces under vacuum at different temperatures. A window in the vacuum chamber allowed observation of the foaming and collapse of the porous structures was observed during cooling. Characterization of the aluminum foams revealed different levels of expansion, porous structures and degrees of drainage. The best foams were obtained at 680 °C with a density of 0.78 g/cm3. This technique appears to be a feasible low cost route for producing Al foams based on scrap material.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banhart, J., Prog. Mat. Sci., 46, 559632 (2001).CrossRefGoogle Scholar
Fernández, P., Cruz, L. J. and García-Cambronero, L.E., Prospectiva, 8, 711 (2010).Google Scholar
Ha, W., Kim, S.K., Jo, H-H and Kim, Y-J, Mat. Sci. Tech., 21 (2005).CrossRefGoogle Scholar
Kumar, G. S. V., Heim, K., Garcia-Moreno, F., Banhart, J. and Kennedy, A. R., Busan (Korea) 2011.Google Scholar
Wiehler, H., Körner, C. and Singer, R. F., Adv. Eng. Mat., 10, 171178 (2008).CrossRefGoogle Scholar
Kumar, G. V., Mukherjee, M., Garcia-Moreno, F. and Banhart, J., Metall. Mat.s Trans. A, 18 (In press).Google Scholar
Nakajima, H., Prog. Mat. Sci., 52, 10911173 (2007).10.1016/j.pmatsci.2006.09.001CrossRefGoogle Scholar
Yang, C. C. and Nakae, H., J. Mat. Proc. Tech., 141, 202206 (2003).CrossRefGoogle Scholar
Jianga, B., Wanga, Z. and Zhao, N., Scripta Mate., 56, 169172 (2007).CrossRefGoogle Scholar
Korner, C., Arnold, M. and Singer, R. F. Mat. Sci. Eng., 2840 (2005).CrossRefGoogle Scholar
Gregory, C. and John, F., J. Col. Inter. Sci., 127, 222238 (1989).Google Scholar