Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:25:14.906Z Has data issue: false hasContentIssue false

The Use of Electrospun Polycaprolactone as a Dermal Scaffold for Skin Tissue Engineering

Published online by Cambridge University Press:  31 January 2011

Ming Chen
Affiliation:
g_m1chen@umassd.edu, University of Massachusetts Dartmouth, Biomedical Engineering and Biotechnology, North Dartmouth, Massachusetts, United States
Manisha Chopra
Affiliation:
mchopra@umassd.edu, University of Massachusetts Dartmouth, Biomedical Engineering and Biotechnology, North dartmouth, Massachusetts, United States
Sankha Bhowmick
Affiliation:
sbhowmick@umassd.edu, University of Massachusetts Dartmouth, Mechanical Engineering, North Dartmouth, Massachusetts, United States
Get access

Abstract

Rapid healing of acute and chronic skin defects is an important objective. In the present work, we report on the design and feasibility of a co-culture system for fibroblasts and keratinocytes by using electrospun polycaprolactone (PCL) scaffolds. Specifically, we quantified the effect of scaffold fiber diameter on keratinocyte attachment, proliferation and differentiation along with collagen secretion by fibroblasts post vacuum seeding with fibroblasts at various depths. The results show that fibroblasts secrete more collagen and keratinocytes differentiate more on 400 nm scaffolds than on 1000 nm scaffolds. Also, fibroblasts co-cultured with keratinocytes provide increased collagen secretion and keratinocyte differentiation. These results suggest that the fiber architecture can be a useful parameter in skin tissue engineering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lan, C. W., Wang, F. F. and Wang, Y. J., J Biomed Mater Res A 66, 38 (2003).Google Scholar
2 Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S. and Ko, F. K., J Biomed Mater Res 60, 613 (2002).Google Scholar
3 Boland, E. D., Wnek, G. E., Simpson, D. G., Pawlowski, K. J. and Bowlin, G. L. J. Macromol. Sci. Pure Appl. Chem. A38, 1231 (2001).Google Scholar
4 Murugan, R. and Ramakrishna, S., Tissue Eng 12, 435 (2006).Google Scholar
5 Basson, M. D., Modlin, I. M., Turowski, G. and Madri, J. A., Eur J Gastroenterol Hepatol 5, 21 (1993).Google Scholar
6 Carsin, H., Ainaud, P., Le Bever, H., Rives, J., Lakhel, A., Stephanazzi, J., Lambert, F. and Perrot, J., Burns 26, 379 (2000).Google Scholar
7 Phillips, T. J. and Gilchrest, B. A., Epithelial Cell Biol 1, 39 (1992).Google Scholar
8 Rippke, F., Schreiner, V. and Schwanitz, H. J., Am J Clin Dermatol 3, 261 (2002).Google Scholar
9 Ojeh, N., Frame, J. and Navsaria, H., Tissue Eng 7, 457 (2001).Google Scholar
10 El-Ghalbzouri, A., Lamme, E.N., Blitterswijk, C. van, Koopman, J. and Ponec, M., Biomaterials 25, 2987 (2004).Google Scholar
11 Black, A. F., Bouez, C., Perrier, E., Schlotmann, K., Chapuis, F., Damour, O, Tissue Eng 11, 723 (2005).Google Scholar
12 Coombes, A. G., Verderio, E., Shaw, B., Li, X., Griffin, M. and Downes, S., Biomaterials 23, 2113 (2002).Google Scholar
13 Schwope, A. D., Wise, D. L., Sell, K. W., Skornik, W. A. and Dressler, D. P., Trans, D. P. Am Soc Artif Intern Organs 20A, 103 (1974).Google Scholar
14 Bell, E., Ehrlich, H. P., Buttle, D. J. and Nakatsuji, T.. Science 211, 1052 (1981).Google Scholar
15 Parenteau, N., Cambridge, (Cambridge University Press, U.K. 1994) p45.Google Scholar
16 Chen, M., Patra, P. K., Warner, S. B. and Bhowmick, S., Biophys. Rev. Lett 1, 189 (2006).Google Scholar
17 Chen, M., Michaud, H. and Bhowmick, S., J Biomech Eng 131, 074521.1 (2009).Google Scholar
18 Chen, M., Patra, P. K., Warner, S. B. and Bhowmick, S., Tissue Eng 13, 579 (2007)Google Scholar
19 Chen, M., Patra, P. K., Lovett, M. L., Kaplan, D. L. and Bhowmick, S., J Tissue Eng Regen Med 3, 269 (2009).Google Scholar
20 Lim, I. J., Phan, T.T., Bay, B. H., Qi, R., Huynh, H. and Tan, W. T., Lee, S. T. and Longaker, M. T., Am J Physiol Cell Physiol 283, C212 (2002).Google Scholar
21 Rheinwald, J. G., Green, H., Cell 6, 331 (1975).Google Scholar
22 Kuroyanagi, Y., Kenmochi, M., Ishihara, S., Takeda, A., Shiraishi, A., Ootake, N., Uchinuma, E., Torikai, K., and Shioya, N., Ann Plast Surg 31, 340 (1993)Google Scholar
23 Rubin, J. S., Osada, H., Finch, P. W., Taylor, W. G., Rudikoff, S. and Aaronson, S. A., Proc Natl Acad Sci U S A 86, 802 (1989)Google Scholar
24 Marchese, C., Rubin, J., Ron, D., Faggioni, A., Torrisi, M. R., Messina, A., A, L. Frati, and Aaronson, S. A., J Cell Physiol 144, 326 (1990).Google Scholar
25 Lee, D. Y., Lee, J. H., Lee, E. S., Cho, K. H. and Yang, J. M., Arch Dermatol Res 294, 444 (2003).Google Scholar