Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T20:46:19.570Z Has data issue: false hasContentIssue false

Total Dose Radiation Effects In Si Nanocrystal Non-Volatile Memory Transistors

Published online by Cambridge University Press:  01 February 2011

Mihail P. Petkov
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109, USA
L. Douglas Bell
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109, USA
Robert J. Walters
Affiliation:
T. J. Watson Laboratory of Applied Physics, California Institute of Technology Pasadena, CA 91125, USA
Harry A. Atwater
Affiliation:
T. J. Watson Laboratory of Applied Physics, California Institute of Technology Pasadena, CA 91125, USA
Get access

Abstract

We report results pertinent to the high total dose tolerance of Si nanocrystal non-volatile memory cells. The nc-Si FETs made by ion implantation retained virtually unchanged write / erase characteristics, typical for the two-state devices, to cumulative doses exceeding 15 Mrad(Si).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ostraat, M. L. et al., Appl. Phys. Lett. 79, 433 (2001).Google Scholar
[2] Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F. and Chan, K., Appl. Phys. Lett. 68, 1379 (1996).Google Scholar
[3] Kapetanakis, E., Normand, P., Tsoukalas, D., Beltsios, K., Stoemenos, J., Zhang, S., and van den Berg, J., Appl. Phys. Lett. 77, 3450 (2000).Google Scholar
[4] González-Varona, O., Garrido, B., Pérez-Rodríguez, A., Bonafos, C., Montserrat, J. and Morante, J. R., Solid State Phenom. 80–81, 243 (2001).Google Scholar
[5] Müller, T., Heinz, K.-H. and Möller, W., Appl. Phys. Lett. 81, 3049 (2002).Google Scholar
[6] Müller, T., Heinz, K.-H. and Möller, W., Mater. Sci. & Engineering B 101, 49 (2003).Google Scholar
[7] Petkov, M. P., Bell, L. D., and Atwater, H. A., IEEE Trans. Nucl. Sci., in press (December 2004).Google Scholar
[8] Nguyen, D. N., Guertin, S. M., Swift, G. M. and Johnston, A. H., IEEE Trans. Nucl. Sci. 46, 1744 (1999).Google Scholar
[9] Bernacki, S., Hunt, K., Tyson, S., Hudgens, S., Pashmakov, B. and Czubatyj, W., IEEE Trans. Nucl. Sci. 47, 2528 (2001).Google Scholar
[10] Sinclair, R. and Beech, R., “High speed, radiation hard MRAM buffer”, Non-Volatile Memory Technology Symposium, November 4–6, 2002, Honolulu.Google Scholar
[11] Philpy, S. C., Kamp, D. A., DeVilbiss, A. D., Isaakson, A. F., and Derbenwick, G. F., “Ferroelectric memory technology for aerospace applications”, 2000 IEEE Aerospace Conference Proceedings 5, 377 (2000).Google Scholar
[12] Walters, R. J. et al., Appl. Phys. Lett. 85, 2622 (2004).Google Scholar
[13] Ziegler, J. F., Biersack, J. P., and Littmark, U., The stopping and range of ions in solids, Pergamon, New York, 1985.Google Scholar
[14] Lenahan, P. M. and Conley, J. F., IEEE Trans. Nucl. Sci. 45, 2413 (1998).Google Scholar
[15] Nicklaw, C. J. et al., IEEE Trans. Nucl. Sci. 47, 2269 (2000).Google Scholar
[16] Nicklaw, C. J., Lu, Z.-Y., Fleetwood, D. M., Schrimpf, R. D. and Pantelides, S. T., IEEE Trans. Nucl. Sci. 49, 2667 (2002).Google Scholar