Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:13:21.281Z Has data issue: false hasContentIssue false

Thin Film on ASIC (TFA) - A Technology for Advanced Image Sensor Applications

Published online by Cambridge University Press:  01 February 2011

Juergen Sterzel
Affiliation:
Jena-Optronik GmbH, JTE, Pruessingstr. 41, D-07745 Jena,Germany
Frank Blecher
Affiliation:
Lambda Lab, Kohlbettstr. 20, D-57072 Siegen,Germany
Get access

Abstract

Thanks to its three-dimensional integration and the use of amorphous as well as crystalline silicon, the TFA technology is suitable for advanced image sensor applications. This paper describes the fundamentals of the properties: sensitivity, dark current, temporal and fixed-pattern noise of these TFA image sensors. It compares the different sensitivity definitions, especially current sensitivity and the charge conversion factor. Further, the dark current sources are pointed out, and their temperature behavior is described. By noise calculations, different pixel input stages are compared with regard to low light level detection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Böhm, M., Blecher, F., Eckhardt, A., Seibel, K., Schneider, B., Sterzel, J., Benthien, S., Keller, H., Lule, T., Rieve, P., Sommer, M., Uffel, B. van, Liebrecht, F., Lind, R. C., Humm, L., Efron, U., Roth, E., in Amorphous and Microcrystalline Silicon Technology, edited by Wagner, S., Hack, M., Branz, H. M., Schropp, R., and Shimizu, I. (Mater. Res. Soc. Proc. 507, Pittsburgh, PA 1998), pp. 327338 Google Scholar
2 Schneider, B., Rieve, P., and Böhm, M. in Handbook on Computer Vision and Applications, ed. by Jähne, B., Haussecker, H., and Geissler, P. (Academic Press, Boston, 1999), pp. 237270 Google Scholar
3 Anelli, G., Commichau, S. C., Despeise, M., Dissertori, G., Jarron, P., Miazza, C., Moraes, D., Shah, A., Viertel, G. M., Wyrsch, N., Nucl. Inst. & Meth. In Phys. Res. A, 518, pp. 366372, 2004 Google Scholar
4 Lule, T., Benthien, S., Keller, H., Mütze, F., Rieve, P., Seibel, K., Sommer, M., and Böhm, M., IEEE Trans. Elec. Dev. ED-47, pp. 21102122 (2000)Google Scholar
5 Goy, J., Courtois, B., Karam, J. M., Pressecq, F., Analog Integrated Circuits and Signal Processing, 29, pp. 95104 (2001)Google Scholar
6 Falk, H., Proc. of the IEEE 91, pp. 303304 (2003)Google Scholar
7 Henson, W. K., Yang, N., Kubicek, S., Vogel, E. M., Wortmann, J. J., Meyer, K. de, Naem, A., IEEE Trans. El. Dev. 47, pp. 13931400 (2000)Google Scholar
8 Street, R. A., Appl. Phys. Lett., 57, pp. 13341336 (1990)Google Scholar
9 Blecher, F., Schneider, B., Sterzel, J., and Böhm, M., in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices, edited by Branz, H. M., Collins, R. W., Okamoto, H., Guha, S., and Schropp, R., (Mater. Res. Soc. Proc. 557, Pittsburgh, PA 1999), pp. 869874 Google Scholar
10 Sterzel, J., Bestimmung und Modellierung von Detektionsgrenzen bei TFA-Bildsensoren, thesis (2005)Google Scholar