Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T18:44:20.940Z Has data issue: false hasContentIssue false

Thermodynamic aspects of transition metals doped ZnO

Published online by Cambridge University Press:  21 March 2011

David Sedmidubský
Affiliation:
Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.
Zdeněk Sofer
Affiliation:
Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.
Štěpán Huber
Affiliation:
Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.
Jindřich Leitner
Affiliation:
Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic.
Get access

Abstract

We present a thermodynamic study of selected transition metals (TM=Cr, Mn, Fe and Co) solubility in ZnO based on the assessment of available thermodynamic data and ab-initio calculations in the respective TM-Zn-O systems. The ab-initio DFT calculations of enthalpies of formation of the involved phases and the energies of substitution defect (TM-Zn) formation were performed using the full-potential APW+lo technique (WIEN2k code) within GGA+U approximation. The calculated energies of mixed oxides and virtual (unstable) TMO end-members of (Zn,TM)O solid solutions are referred to well established thermodynamic data of binary oxides taken from SGTE database. The assessed thermodynamic data are subsequently used for calculation of phase equilibria and construction of the respective pO2-T-x phase (FactSage software). Whereas the solubility of Mn, Fe, and Co in ZnO is found not to exceed 1 mol% at low temperatures (T<900°C), the homogeneity range is substantially enlarged at elevated temperatures (~10 mol% at the eutectic temperature). By contrast, the solubility of Cr turned out to be negligible in the relevant range of T and pO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bates, C. H., White, W. B., Roy, R., J. Inorg. Nucl. Chem. 28, 397 (1966).Google Scholar
2. Locmelis, S., Binnewies, M., Z. Anorg. Allg. Chem. 625, 1573 (1999).Google Scholar
3. Nipan, G. D., Ketsko, V. A., Kol’tsova, T. N.. Stognii, A. I., Yanushkevich, K. I., Pan’kova, V. V., Khoviv, A. M., Solodukha, A. M., Russ. J. Inorg. Chem. 51, 1961 (2006).Google Scholar
4. Klemme, S., van Miltenburg, J. C., Miner. Mag. 68, 515 (2004).Google Scholar
5. Ziemniak, S. E. Anovitz, L. M., Castelli, R. A., Porter, W. D., J. Chem. Thermodyn. 39, 1474 (2007).Google Scholar
6. Straumal, B., Baretzky, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P., J. Eur. Ceram. Soc. 29, 1963 (2009).Google Scholar
7. Driessens, F. C. M., Rieck, G. D., J.Inorg.Nucl.Chem. 28, 1593 (1966).Google Scholar
8. Blasco, J., García, J., J. Solid State Chem. 179, 2199 (2006).Google Scholar
9. Peiteado, M., Sturm, S., Caballero, A. C., Makovec, D.: Acta Mater. 56, 4028 (2008).Google Scholar
10. Navrotsky, A., Klepa, O. J.: J. Inorg. Nucl. Chem. 30, 479 (1968).Google Scholar
11. Chhor, K., Bocquet, J. F., Pommier, C., Chardon, B.: J. Chem. Thermodyn. 18, 89 (1986).Google Scholar
12. Degterov, S. A., Jak, E., Hayes, P. C., Pelton, A. D.: Metall. Mater. Trans. B 32B, 643 (2001).Google Scholar
13. Bale, C. W., Chartrand, P., Degterov, S. A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melançon, J., Pelton, A. D., Petersen, S., Calphad 26, 189 (2002).Google Scholar
14. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J., WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria (2001).Google Scholar