Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T11:49:50.614Z Has data issue: false hasContentIssue false

Thermal Properties of Graphene and Carbon Based Materials: Prospects of Thermal Management Applications

Published online by Cambridge University Press:  06 September 2011

Suchismita Ghosh
Affiliation:
Intel Corporation, Hillsboro OR 97124, U.S.A.
Alexander A. Balandin
Affiliation:
Nano-Device Laboratory, Electrical Engineering Department and Materials science and Engineering Program, University of California Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

In recent years, there has been an increasing interest in thermal properties of materials. This arises mostly from the practical needs of heat removal and thermal management, which have now become critical issues for the continuing progress in electronic and optoelectronic industries. Another motivation for the study of thermal properties at nanoscale is from a fundamental science perspective. Thermal conductivity of different allotropes of carbon materials span a uniquely large range of values with the highest in graphene and carbon nanotube and the lowest in amorphous or disordered carbon. Here we describe the thermal properties of graphene and carbon-based materials and analyze the prospects of applications of carbon materials in thermal management.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moore, G. E., Electronics 38, 114 (1965).Google Scholar
2. Haensch, W., Nowak, E. J., Dennard, R. H., Solomon, P. M., Bryant, A., Dokumaci, O. H., Kumar, A., Wang, X., et al. . IBM Journal of Research and Development 50, 339 (2006).Google Scholar
3. Pop, E., Sinha, S., and Goodson, K. E., Proceedings of the IEEE 94, 1587 (2006).Google Scholar
4. Balandin, A. A., IEEE Spectrum, 29 (2009).Google Scholar
5. Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., Journal of Applied Physics 93, 793 (2003).Google Scholar
6. Borca-Tasciuc, T., Achimov, D., Liu, W. L., Chen, G., Ren, H.-W., Lin, C.- H., and Pei, S. S., Microscale Thermophys. Eng. 5, 225 (2001).Google Scholar
7. Balandin, A. A., and Wang, K. L., Physical Review B 58, 1544 (1998).Google Scholar
8. Lepri, S., Livi, R., and Politi, A., Physics Reports 377, 1(2003).Google Scholar
9. Basile, G., Bernardin, C., and Olla, S., Physical Review Letters 96, 204303 (2006).Google Scholar
10. Chang, C. W., Okawa, D., Garcia, H., Majumdar, A., and Zettl, A., Physical Review Letters 101, 075903 (2008).Google Scholar
11. Narayan, O., and Ramaswamy, S., Physical Review Letters 89, 200601 (2002).Google Scholar
12. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I.V., and Firsov, A. A., Science 306, 666 (2004).Google Scholar
13. Geim, A. K., and Novoselov, K. S., Nature Materials 6, 183 (2007).Google Scholar
14. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S.V., and Firsov, A. A., Nature 438, 197 (2005).Google Scholar
15. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., Physical Review Letters 97, 187401 (2006).Google Scholar
16. Calizo, I., Bao, W., Miao, F., Lau, C. N., and Balandin, A. A., Applied Physics Letters 91, 201904 (2007).Google Scholar
17. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., Nano Letters 8, 902 (2008).Google Scholar
18. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., and Lau, C. N., Applied Physics Letters 92, 151911 (2008).Google Scholar
19. Ghosh, S., Bao, W., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., and Balandin, A. A., Nature Materials 9, 555 (2010).Google Scholar
20. Kelly, B. T., Physics of Graphite, Applied Science Publishers, London (1986).Google Scholar
21. Sun, K., Stroscio, M. A., and Dutta, M., Superlattices and Microstructures 45, 60 (2009)Google Scholar
22. Klemens, P. G., “Unusually high thermal conductivity in carbon nanotubes,” Proceedings of the Twenty-Sixth International Thermal Conductivity Conference, ed. Dinwiddie, R. B., (Destech Publications, Lancaster, Pennsylvania, 2004) 26, pp. 4857.Google Scholar
23. Woodcraft, A. L., Barucci, M., Hastings, P. R., Lolli, L., Martelli, V., Risegari, L., and Ventura, G., Cryogenics 49, 159 (2009).Google Scholar
24. Cahill, D. G, and Pohl, R. O., Solid State Communications, 70, 927 (1989).Google Scholar
25. Casiraghi, C., Ferrari, A. C., and Robertson, J., Physical Review B 72, 085401 (2005).Google Scholar
26. Shamsa, M., Liu, W. L., Balandin, A. A., Casiraghi, C., Milne, W. I., and Ferrari, A. C., Applied Physics Letters 89, 161921 (2006).Google Scholar
27. Balandin, A. A., Shamsa, M., Liu, W. L., Casiraghi, C., and Ferrari, A. C., Applied Physics Letters 93, 043115 (2008).Google Scholar
28. Liu, W. L., Shamsa, M., Calizo, I., Balandin, A. A., Ralchenko, V., Popovich, A., and Saveliev, A., Applied Physics Letters 89, 171915 (2006).Google Scholar
29. Shamsa, M., Ghosh, S., Calizo, I., Ralchenko, V., Popovich, A., and Balandin, A. A., Journal of Applied Physics 103, 083538 (2008).Google Scholar
30. Braginsky, L., Shklover, V., Hofmann, H., and Bowen, P., Physical Review B 70, 134201 (2004).Google Scholar
31. Ijima, S., Nature 354, 56 (1991).Google Scholar
32. Ruoff, R. S., and Lorents, D. C., Carbon 33, 925 (1995).Google Scholar
33. Osman, M. A., and Srivastava, D., Nanotechnolgy 12, 21 (2001).Google Scholar
34. Hone, J., Whitney, M., Piskoti, C., and Zettl, A., Physical Review B 59, R2514 (1999).Google Scholar
35. Benedict, L. X., Louie, S. G., and Cohen, M. L., Solid State Communications 100, 177 (1996).Google Scholar
36. Kim, P., Shi, L., Majumder, A., McEuen, P. L., Physical Review Letters 87, 215502 (2001).Google Scholar
37. Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H., Nano Letters 6, 96 (2006).Google Scholar
38. Aliev, A. E., Lima, M. H., Silverman, E. M., and Baughman, R. H., Nanotechnology 21, 035709 (2010).Google Scholar
39. Berber, S., Kwon, Y-K., and Tomanek, D.. Physical Review Letters 84, 4613 (2000).Google Scholar
40. Jauregui, L. A., Yue, Y., Sidorov, A. N., Hu, J., Yu, Q., Lopez, G., Jalilian, R., Benjamin, D. K., et al. ., Electrochemical Society Transactions 28, 73 (2010).Google Scholar
41. Cai, W., Moore, A. L., Zhu, Y., Li, X., Chen, S., Shi, L., and Ruoff, R. S., Nano Letters 10, 1645 (2010).Google Scholar
42. Chen, S., Moore, A. L., Cai, W., Suk, J. W., An, J., Mishra, C., Amos, C., Magnuson, C. W., Kang, J., Shi, L., and Ruoff, R. S., ACS Nano 5, 321 (2011).Google Scholar
43. Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R. R., and Geim, A. K., ACS Nano 4, 1889 (2010).Google Scholar
44. Seol, J. H., Jo, I., Moore, A. R, Lindsay, L., Aitken, Z. H., Pettes, M. T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., and Ruoff, R. S., Science 328, 213 (2010).Google Scholar
45. Nika, D. L., Pokatilov, E. P., Askerov, A. S., and Balandin, A. A., Physical Review B 79, 155413 (2009).Google Scholar
46. Nika, D. L., Ghosh, S., Pokatilov, E. P., and Balandin, A. A., Applied Physics Letters 94, 203103 (2009).Google Scholar
47. Klemens, P. G., J. Wide Bandgap Materials 7, 332 (2000).Google Scholar
48. Klemens, P. G., Int. J. Thermophysics 22, 265 (2001).Google Scholar
49. Ghosh, S., Bao, W., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., and Balandin, A. A., Nature Materials 9, 555(2010).Google Scholar
50. Saito, K., and Dhar, A., Physical Review Letters 104, 040601 (2010).Google Scholar
51. Jang, W., Chen, Z., Bao, W., Lau, C. N., and Dames, C., Nano Letters 10, 3909 (2010).Google Scholar
52. Naeemi, A., and Meindl, J. D., IEEE Electron Device Letters 28, 428 (2007).Google Scholar
53. Lan, J., Wang, J. S., Gan, C. K., and Chin, S. K., Physical Review B 79, 115401 (2009).Google Scholar
54. Murali, R., Yang, Y., Brenner, K., Beck, T., and Meindl, J. D., Applied Physics Letters 94, 243114 (2009).Google Scholar
55. Hu, J., Ruan, X., and Chen, Y. P., Nano Letters 9, 2730 (2009).Google Scholar
56. Guo, Z., Zhang, D., and Gong, X-G., Applied Physics Letters 95, 163103 (2009).Google Scholar
57. Evans, W. J., Hu, L., and Keblinski, P., Applied Physics Letters 96, 203103 (2010).Google Scholar
58. Zhong, W.-R., Zhang, M. P., Ai, B. Q., and Zheng, D. Q., Applied Physics Letters 98, 113107 (2011).Google Scholar
59. Subrina, S., Kotchekov, D., and Balandin, A. A., IEEE Electron Device Letters 30, 1281 (2009).Google Scholar
60. Koh, Y. K., Bae, M. H., Cahill, D. G., and Pop, E., Nano Letters 10, 4363 (2010).Google Scholar
61. Sahil, K. M. F., Goyal, V., and Balandin, A. A., ECS Proceeds, (2011).Google Scholar
62. Yu, A., Itkis, M. E., Bekyarova, E., and Haddon, R. C., Applied Physics Letters 89, 133102 (2006).Google Scholar