Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T18:53:46.707Z Has data issue: false hasContentIssue false

Terahertz Ellipsometry Using Electron-Beam Based Sources

Published online by Cambridge University Press:  01 February 2011

Tino Hofmann
Affiliation:
thofmann@engr.unl.edu, University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Craig M. Herzinger
Affiliation:
cherzinger@jawoollam.com, J.A. Woollam Co., Inc., Lincoln, Nebraska, United States
Ulrich Schade
Affiliation:
schade@bessy.de, BESSY mbH, Berlin, Germany
Michael Mross
Affiliation:
mmross@vermontphotonics.com, Vermont Photonics Technologies Corporation, Bellows Falls, Vermont, United States
John A. Woollam
Affiliation:
jwoollam@jawoollam.com, J.A. Woollam Co., Inc.,, Lincoln, Nebraska, United States
Mathias Schubert
Affiliation:
schubert@engr.unl.edu, University of Nebraska-Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Get access

Abstract

The precise determination of materials' optical constants in the THz frequency domain is an important new challenge in basic research and is crucial for novel technological applications. Spectroscopic ellipsometry is known as a vital tool for the determination of the materials' dielectric function including its anisotropy. However, ellipsometric measurements at very long wavelengths are difficult due to the lack of reliable sources of sufficient intensity and brilliance. Here we report on our recent advances to use ellipsometry in combination with different electron beam based sources in order to in investigate condensed matter samples in the frequency range from 0.1 to 8 THz. We successfully employ terahertz radiation emitted from two different tunable desktop sources (Smith-Purcell-effect source and a backward wave oscillator) in a polarizer-sample-analyzer ellipsometer scheme. We discuss and present THz range physical material properties due to bound and unbound charge resonances in semiconducting materials. This research will provide important understanding of optical properties for novel materials, inspire new designs, and accelerate development of optical Terahertz devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Siegel, P., IEEE T. Microw. Theory 50, 910 (2002).Google Scholar
2. Woolard, D., Brown, E., Kemp, M., and Pepper, M., Proceedings of the IEEE 93, 1722 (2005).Google Scholar
3. Rivory, J. and Abeles, F., Eds., Spectroscopic Ellipsometry: Proceedings of the First International Conference, (Elsevier, Lausanne, 1993).Google Scholar
4. Fried, M., Humlíček, J., and Hingerl, K., Eds., Spectroscopic Ellipsometry: Proceedings of the Third International Conference, (Elsevier, Lausanne, 2004).Google Scholar
5. Collins, R. W., Aspnes, D. E., and Irene, E. A., Eds., Spectroscopic Ellipsometry: Proceedings of the Second International Conference, (Elsevier, Lausanne, 1998).Google Scholar
6. Schubert, M., Arwin, H., and Beck, U., Eds., Spectroscopic Ellipsometry: Proceedings of the Fourth International Conference, (WILEY-VCH, Weinheim, 2007).Google Scholar
7. Thompkins, H. and Irene, E. A., Eds., Handbook of Ellipsometry, (William Andrew Publishing, Norwich, 2004).Google Scholar
8. Azzam, R. M. and Bashara, N. M., Ellipsometry and Polarized Light, (North-Holland Publ. Co., Amsterdam, 1984).Google Scholar
9. Schubert, M., Infrared Ellipsometry on semiconductor layer structures: Phonons, plasmons and polaritons, (Springer, Berlin, 2004).Google Scholar
10. Nagashima, T. and Hangyo, M., Appl. Phys. Lett. 79, 3917 (2001).Google Scholar
11. Hofmann, T., Schade, U., Eberhardt, W., Herzinger, C., Esquinazi, P., and Schubert, M., Rev. Sci. Inst. 77, 63902 (2006).Google Scholar
12. Hofmann, T., Schade, U., Agarwal, K., Daniel, B., Klingshirn, C., Hetterich, M., Herzinger, C., and Schubert, M., Appl. Phys. Lett. 88, 105 (2006).Google Scholar
13. Abo-Bakr, M., Feikes, J., Holldack, K., Wüstefeld, G., and Hübers, H.-W., Phys. Rev. Lett. 88, 254801 (2002).Google Scholar
14. Abo-Bakr, M., Feikes, J., Holldack, K., Kuske, P., Peatman, W. B., Schade, U., Wüstefeld, G., and Hübers, H.-W., Phys. Rev. Lett. 90, 94801 (2003).Google Scholar
15. Andrews, H. L. and Brau, C. A., Phys. Rev. ST AB 7, 070701 (2004).Google Scholar
16. Williams, G. P., Rev. Sci. Inst. 73, 1461 (2002).Google Scholar
17. Smith, S. and Purcell, E., Phys. Rev. 92, 1069 (1953).Google Scholar
18. Mross, M., Lowell, T. H., Durant, R., and Kimmitt, M. F., J. Biol. Phys. 29, 295 (2003).Google Scholar
19. Doucas, G., Kimmitt, M. F., Kormann, T., Korschinek, G., and Wallner, C., Int. J. Infrared. Milli. 24, 829 (2003).10.1023/A:1023749722697Google Scholar
20. Kalinin, B. N., Karlovets, D. V., Kostousov, A. S., Naumenko, G. A., Potylitsyn, A. P., Saruev, G. A., and Sukhikh, L. G., Nucl. Instrum. Meth. B 252, 62 (2006).Google Scholar