Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T00:06:59.874Z Has data issue: false hasContentIssue false

Temporal response of the optically generated electric field in InAs/GaAs coupled quantum dots

Published online by Cambridge University Press:  31 January 2011

Kushal C. Wijesundara
Affiliation:
kcwijes@phy.ohiou.edu, Ohio University, Department of Physics and Astronomy, 251C Clippinger Research Laboratories, Ohio University, Athens, Ohio, 45701, United States, 740-593-1718, 740-593-0433
Mauricio Garrido
Affiliation:
mg180004@ohio.edu, Ohio University, Department of Physics and Astronomy, Athens, Ohio, United States
Swati Ramanathan
Affiliation:
sr218305@ohio.edu, Ohio University, Department of Physics and Astronomy, 251C Clippinger Research Laboratories, Ohio University, Athens, Ohio, 45701, United States, 740-593-1718, 740-593-0433
Eric A. Stinaff
Affiliation:
stinaff@ohio.edu, Ohio University, Department of Physics and Astronomy, Athens, Ohio, United States
Allan S. Bracker
Affiliation:
bracker@bloch.nrl.navy.mil, Naval Research Laboratory, Washington, District of Columbia, United States
Daniel Gammon
Affiliation:
gammon@nrl.navy.mil, Naval Research Laboratory, Washington, District of Columbia, United States
Get access

Abstract

Coupled quantum dots (CQDs) can provide a sensitive probe of the electric field within a device. With non-resonant excitation above the wetting layer (WL) energy, optical generation of an electric field within the CQD structure was observed. By alternating this non-resonant excitation the temporal response of the optically generated electric field was measured. Decay of this field was measured to be on the order of 110-140 μsec whereas the onset of the optically generated electric field was observed to be less than the temporal resolution of our experiment (7.5 μsec). This may provide a means for fast, non-contact, electric field modulation techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Huggard, P. G., Shaw, C. J., Andrews, S. R., Cluff, J. A., and Grey, R., Phys. Rev. Lett. 84, 1023 (2000).Google Scholar
2 Santori, C., Fattal, D., Vučković, J., Solomon, G. S., and Yamamoto, Y., Nature (London) 419, 594 (2002).Google Scholar
3 Smith, G. H., Novak, D., Lim, C. and Wu, K., Electron. Lett., Vol. 33, No. 13, pp. 11591160, (1997).Google Scholar
4 Garrido, Mauricio, Wijesundara, Kushal C., Ramanathan, Swati, Stinaff, E. A., Bracker, A. S., Gammon, D. ‘Electric field control of a quantum dot molecule through optical excitation’ Submitted Applied Physics Letters (In Review).Google Scholar
5 Stranski, I. N. and Krastanow, Von L., Akad. Wiss. Lit. Mainz Math.-Natur. Kl. IIb 146, 797 (1939).Google Scholar
6 Bracker, A. S., Scheibner, M., Doty, M. F., Stinaff, E. A., Ponomarev, I. V., Kim, J. C., Whitman, L. J., Reinecke, T. L., Gammon, D., Appl. Phys. Lett. 89, 233110 (2006).Google Scholar
7 Doty, M. F., Scheibner, M., Ponomarev, I. V., Stinaff, E. A., Bracker, A. S., Korenev, V. L., Reinecke, T. L., and Gammon, D., Phys. Rev. Lett. 97, 197202 (2006).Google Scholar
8 Stinaff, Eric A., Scheibner, Michael, Bracker, Allan S., Ponomarev, Ilya V., Korenev, Vladimir L., Ware, Morgan E., Doty, Matt F., Reinecke, Thomas L., Gammon, Dan, Science 311, 636 (2006).Google Scholar
9 Wijesundara, Kushal C., Garrido, Mauricio, Ramanathan, Swati, Stinaff, E. A., Scheibner, M., Bracker, A. S., Gammon, D., Mater. Res. Soc. Proc. 1117E, 1117–J04. R1 (2009).Google Scholar
10 Alexandrou, A., Kash, J. A., Mendez, E. E., Zachau, M., and Hong, J. M., Fukuzawa, T. and Hase, Y., Phys. Rev. B 42, 9225 (1990).Google Scholar
11 Dumke, W. P., Phys. Rev. 132, 1998 (1963).Google Scholar