Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:05:12.888Z Has data issue: false hasContentIssue false

Temperature and Size Effects on the Extremely Low Thermal Conductivity of Self-assembled Germanium Quantum-dot Supercrystals in Silicon

Published online by Cambridge University Press:  01 February 2011

Jean-Numa Gillet*
Affiliation:
jngillet@gmail.com, University of Lille 1, Physics and IEMN, Villeneuve d'Ascq, France
Get access

Abstract

Design of semiconducting nanomaterials with an indirect electronic bandgap is currently one of the major areas of research to obtain a high thermoelectric yield by lowering their lattice thermal conductivity. Intensive investigations on superlattices were performed to achieve this goal. However, like one-dimensional nanowires, they decrease heat transport in only one propagation direction of the phonons. Moreover, they often lead to dislocations since they are composed of layered materials with a lattice mismatch. Design of superlattices with a thermoelectric figure of merit ZT higher than unity is therefore hazardous. Self-assembly of epitaxial layers on silicon has been used for bottom-up synthesis of three-dimensional (3D) Ge quantum-dot (QD) arrays in Si for quantum-device and solar-energy applications. Using the atomic-scale 3D phononic crystal model, it is predicted that high-density 3D arrays of self-assembled Ge QDs in Si can as well show an extreme reduction of the thermal transport. 3D supercrystals of Ge QDs in Si present a thermal conductivity that can be as tiny as that of air. These extremely low values of the thermal conductivity are computed for a number of Ge filling ratios and size parameters of the 3D Si-Ge supercrystal. Owing to incoherent phonon scattering with predominant near-field effects, the same conclusion holds for supercrystals with moderate QD disordering. As a result, design of highly-efficient CMOS-compatible thermoelectric devices with ZT possibly much higher than unity might be possible. In this theoretical study, simultaneous evolution of both temperature and average distance between the Ge QDs is analyzed for a non-variable Ge filling ratio to obtain thermal-conductivity values as low as that of air (+/- 0.025 W/m/K).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, W. Zide, J. Gossard, A. Klenov, D. Stemmer, S. Shakouri, A. and Majumdar, A. Phys. Rev. Lett. 96, 045901 (2006).Google Scholar
2 Tritt, T. M. Bottner, H. and Chen, L. MRS Bulletin 33, 366368 (2008).Google Scholar
3 Hochbaum, A. I. Chen, R. Delgado, R. D. Liang, W. Garnett, E. C. Najarian, M. Majumdar, A. and Yang, P. Nature (London) 451, 163167 (2008).Google Scholar
4 Boukai, A. I. Bunimovich, Y. Tahir-Kheli, J., Yu, J.-K. Goddard, W. A. III , and Heath, J. R. Nature (London) 451, 168171 (2008).Google Scholar
5 Volz, S. and Chen, G. Appl. Phys. Lett. 75, 20562058 (1999).Google Scholar
6 Chiritescu, C. Cahill, D. G. Nguyen, N. Johnson, D. Bodapati, A. Keblinski, P. and Zschack, P., Science 315, 351353 (2007).Google Scholar
7 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science 303, 818821 (2004).Google Scholar
8 Harman, T. C. Taylor, P. J. Walsh, M. P. and LaForge, B. E. Science 297, 22292232 (2002).Google Scholar
9 Zaitsev, V. K. in CRC Handbook of Thermoelectrics, Rowe, D. M. Ed. (CRC Press, 1995), chap. 25.Google Scholar
10 Venkatasubramanian, R. Siivola, E. Colpitts, T. and O'Quinn, B., Nature (London) 413, 597602 (2001).Google Scholar
11 Venkatasubramanian, R. Ed., Nanoscale Heat Transport - From Fundamentals to Devices, (Mater. Res. Soc. Symp. Proc. Volume 1172E, Warrendale, PA, 2009).Google Scholar
12 Cahill, D. G. Watson, S. K. and Pohl, R. O. Phys. Rev. B 46, 61316140 (1992).Google Scholar
13 Rothemund, P. W. K. Nature (London) 440, 297302 (2006).Google Scholar
14 Maurice, V. Despert, G. Zanna, S. Bacos, M.-P. and Marcus, P. Nat. Mater. 3, 687691 (2004).Google Scholar
15 Condon, A. Nat. Rev. Genet. 7, 565575 (2006).Google Scholar
16 Martin, C. R. and Kohli, P. Nat. Rev. Drug Discov. 2, 2937 (2002).Google Scholar
17 Yakimov, A. I. Dvurechenskii, A. V. and Nikiforov, A. I. J. Nanoelectron. Optoelectron. 1, 119175 (2006).Google Scholar
18 Kiravittaya, S. Heidemeyer, H. and Schmidt, O. G. Appl. Phys. Lett. 86, 263113 (2005).Google Scholar
19 Gillet, J.-N. Chalopin, Y. and Volz, S. ASME J. Heat Transfer 131, 043206 (2009).Google Scholar
20 Gillet, J.-N. and Voltz, S. J. Electron. Mater., published online, Nov. 2009.Google Scholar
21 Dove, M. T. Introduction to Lattice Dynamics, Cambridge Topics in Mineral Physics and Chemistry, No 4 (Cambridge Univ. Press Cambridge, UK, 1993).Google Scholar
22 Jian, Z. Kaiming, Z. and Xide, X. Phys. Rev. B 41, 1291512918 (1990).Google Scholar
23 Chalopin, Y. J.-Gillet, N. and Volz, S. Phys. Rev. B 77, 233309 (2008).Google Scholar
24 Kim, W. and Majumdar, A. J. Appl. Phys. 99, 084306 (2006).Google Scholar
25 Bohren, C. F. and Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).Google Scholar
26 Hulst, H. C. van de, Light Scattering by Small Particles (Dover, New York, 1981).Google Scholar
27 Glassbrenner, C. J. and Slack, G. A. Phys. Rev. 134, A1058–A1069 (1964).Google Scholar
28 Slack, G. A. and Galginaitis, S. Phys. Rev. 133, A253–A268 (1964).Google Scholar