No CrossRef data available.
Published online by Cambridge University Press: 16 February 2011
Aluminum nitride whiskers were synthesized by nitridation of commercial aluminum powder at 1623K in a nitrogen atmosphere. The starting materials consisted of aluminum and carbon black. The carbon acted as a barrier between aluminum powders during nitridation and was removed by heating in air at 923K. The whiskers were about 0.5-1μm in diameter and 10-20μm in length. The droplets at the whisker tips showed that the whiskers grew via a vapor-liquid-solid mechanism. The morphologies of the whiskers were studied by means of SEM and TEM. The formation of the whiskers depended on the processing conditions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.