Published online by Cambridge University Press: 01 February 2011
Polycrystalline alkaline-earth hexaborides (MB6: M =Ca, Sr, Ba) were synthesized and their thermoelectric and transport properties were examined to discuss their possibility as high temperature thermoelectric materials. Hall measurements showed that carrier concentration of the BaB6 was the highest among the three hexaborides and that of CaB6 was the lowest. Substitution of part of the alkaline earth metals with one of the others changed the carrier concentration of the hexaboride. As the carrier concentration increased, Seebeck coefficient increased and electrical conductivity decreased. These results suggest that the thermoelectric properties of the divalent hexaborides depend largely on the carrier concentration, and optimum carrier concentration which gives maximum power factor was estimated to be approximately 2x1026 m−3. Consequently, such a substitution enables us to control Seebeck coefficient and electrical conductivity of the hexaborides, and will also be effective to reduce the lattice heat conduction due to the alloying effect. A thermoelectric device was fabricated using SrB6 and boron carbide thin films as n-type and p-type elements, respectively. To the best of our knowledge, this is the first demonstration of a thermoelectric device composed of only boron-rich solids.