Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:21:22.591Z Has data issue: false hasContentIssue false

Surface structure modification of Ni3Al foil catalysts by oxidation-reduction treatment

Published online by Cambridge University Press:  21 September 2018

Jun Hyuk Jang
Affiliation:
Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Ya Xu
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Masahiko Demura
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Dang Moon Wee
Affiliation:
Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea
Toshiyuki Hirano
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Get access

Abstract

A two-step treatment, oxidation in air followed by reduction in hydrogen, was carried out to modify the smooth Ni3Al foil surface into Ni particles supported on the oxide structure. The surface structure significantly changed depending on the oxidation temperature. A layer of granular NiO formed on the outer surface and inner oxide zone (IOZ) over Ni3Al foil surface after oxidation at 973 K. The IOZ was a mixture of Al and Ni oxides. In contrast, a large amount of faceted NiO particles formed on the outer surface after oxidation at 1173 K. Beneath the NiO particles, NiAl2O4 thin layer formed on IOZ over Ni3Al foil surface. And then, these NiO was selectively reduced to Ni after reduction treatment, constituting an oxide supported Ni particles structure. These results suggest that it is possible to modify the surface structure of Ni3Al foils simply by oxidation-reduction treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brown, LF. Int J Hydrogen Energy 2001;26:381.Google Scholar
2. Rostrup-Nielson, JR. Phy Chem Chem Phys 2001;3:283.Google Scholar
3. Ogden, JM. Phys Today 2002;55:69.Google Scholar
4. Janicke, MT, Kestenbaum, H, Hagendorf, U, Schuth, F, Fichtner, M, Schubert, K. J Catal 2000;191:282.Google Scholar
5. Aartun, I, Venvik, HJ, Holmen, A, Pfeifer, P, Gorke, O, Schubert, K. Catal Today 2005;110:98.Google Scholar
6. Stoloff, NS. Int Mater Rev 1989;34:153.Google Scholar
7. Stoloff, NS, Liu, CT, Deevi, SC. Intermetallics 2000;8:1313.Google Scholar
8. Cao, G, Geng, L, Zheng, Z, Naka, M. Intermetallics 2007;15:1672.Google Scholar
9. Susan, DF, Marder, AR. Oxid Met 2002;57:159.Google Scholar
10. Perez, P, Gonzalez-Carrasco, JL, Adeva, P. Oxid Met 1997;48:143.Google Scholar
11. Haanappel, VAC, Perez, P, Gonzalez-Carrasco, JL, Stroosnijder, MF. Intermetallics 1998;6:347.Google Scholar
12. Qin, F, Anderegg, JW, Jenks, CJ, Gleeson, B, Sordelet, DJ, Thiel, PA. Surf Sci 2008;602:205.Google Scholar
13. Demura, M, Kishida, K, Suga, Y, Takanashi, M, Hirano, T. Scr Mater. 2002;47:267.Google Scholar
14. Demura, M, Suga, Y, Umezawa, O, Kishida, K, George, EP, Hirano, T. Intermetallics 2001;9:157.Google Scholar
15. Chun, DH, Xu, Y, Demura, M, Kishida, K, Oh, MH, Hirano, T, Wee, DM. Catal Lett 2006;106:71.Google Scholar
16. Jeong, JH, Lee, JW, Seo, DJ, Seo, Y, Yoon, WL, Lee, DK, Kim, DH. Appl Catal A Gen 2006;302:151.Google Scholar
17. Bolt, PH, Grotenhuis, E, Geus, JW, Habraken, FHPM. Surf Sci 1995;329:227.Google Scholar
18. Haerig, M, Hofmann, S. Appl Surf Sci 1998;125:99.Google Scholar
19. Paparazzo, E. Surf Interface Anal 1988;12:115.Google Scholar
20. Ng, KT, Hercules, DM. J Phys Chem 1976;80:2094.Google Scholar
21. Chun, DH, Xu, Y, Demura, M, Kishida, K, Wee, DM, Hirano, T. J Catal 2006;243:99.Google Scholar