Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:08:14.628Z Has data issue: false hasContentIssue false

Surface Acoustic Wave-Induced Electroluminescence Intensity Oscillation in Planar Light-Emitting Devices

Published online by Cambridge University Press:  01 February 2011

Marco Cecchini
Affiliation:
Scuola Normale Superiore and NEST-INFM, I-56126 Pisa, Italy.
Vincenzo Piazza
Affiliation:
Scuola Normale Superiore and NEST-INFM, I-56126 Pisa, Italy.
Fabio Beltram
Affiliation:
Scuola Normale Superiore and NEST-INFM, I-56126 Pisa, Italy.
Martin Ward
Affiliation:
Toshiba Research Europe Limited, Cambridge Research Laboratory, 260 Cambridge Science Park, Milton Road, Cambridge CB4 OWE, United Kingdom.
Andrew Shields
Affiliation:
Toshiba Research Europe Limited, Cambridge Research Laboratory, 260 Cambridge Science Park, Milton Road, Cambridge CB4 OWE, United Kingdom.
Harvey Beere
Affiliation:
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
David Ritchie
Affiliation:
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
Get access

Abstract

Electroluminescence (EL) emission controlled by means of surface acoustic waves (SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital transducers (IDTs) for SAW generation were integrated onto pLEDs fabricated following a scheme compatible with SAW propagation [1]. EL in presence of SAW was studied by time-correlated photon-counting techniques. We found intensity oscillation at the SAW frequency (˜1 GHz) demonstrating electron injection into the p-type region synchronous with the SAW wavefronts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cecchini, M., Piazza, V., Beltram, F., Lazzarino, M., Ward, M. B., Shields, A. J., Beere, H. E. and Ritchie, D. A., Appl. Phys. Lett. 82, 636 (2003).Google Scholar
2 Wixforth, A., Kotthaus, J. P. and Weimann, G., Phys. Rev. Lett. 56, 2104 (1986).Google Scholar
3 Willett, R. L., Ruel, R. R., West, K. W. and Pfeiffer, L. N., Phys. Rev. Lett. 71, 3846 (1993).Google Scholar
4 Esslinger, A., Winkler, R. W., Rocke, C., Wixforth, A., Kotthaus, J. P., Nickel, H., Schlapp, W. and Lösch, R., Surf. Sci. 305, 83 (1994).Google Scholar
5 Esslinger, A., Wixforth, A., Winkler, R. W., Kotthaus, J. P., Nickel, H., Schlapp, W. and Lösch, R, Solid State Commun. 84, 939 (1992).Google Scholar
6 Campbell, J. W. M., Guillon, F., D'Iorio, M., Buchanan, M. and Stoner, R. J., Solid State Commun. 84, 735 (1992).Google Scholar
7 Shilton, J. M., Talyanskii, V. I., Pepper, M., Ritchie, D. A., Frost, J. E. F., Ford, C. J. B., Smith, C. G. and Jones, G. A. C., J. Phys.: Condens. Matter 8, L531 (1996).Google Scholar
8 Cunningham, J., Talyanskii, V. I., Shilton, J. M., Pepper, M., Kristensen, A. and Lindelof, P. E., Phys. Rev. B 62, 1564 (2000).Google Scholar
9 Foden, C. L., Talyanskii, V. I., Milburn, G. J., Leadbeater, M. L. and Pepper, M, Phys. Rev. A 62, 011803(R) (2000).Google Scholar
10 Hamilton, B., in Properties of Gallium Arsenide, edited by Brozel, M. R. and Stillman, G. E. (INSPEC, London, England, 1996).Google Scholar
11 Cecchini, M., Simoni, G. De, Piazza, V., Beltram, F., Beere, H. E. and Ritchie, D. A., Appl. Phys. Lett. 85, 3020 (2004).Google Scholar
12 Rocke, C., Zimmermann, S., Wixforth, A., Kotthaus, J. P., Böhm, G., and Weimann, G., Phys. Rev. Lett. 78, 4099 (1997).Google Scholar
13 Cecchini, M., Piazza, V., Beltram, F., Gevaux, D. G., Ward, M. B., Shields, A. J., Beere, H. E. and Ritchie, D. A., cond-mat/0501136 v1 (2005).Google Scholar