Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:19:43.923Z Has data issue: false hasContentIssue false

Supramolecular Nanotube Hosts for Encapsulation of 10-nm-Scale Objects

Published online by Cambridge University Press:  01 February 2011

Toshimi Shimizu*
Affiliation:
tshmz-shimizu@aist.go.jp, National Institute of Advanced Industrial Science and Technology (AIST), Nanoarchitectonics Research Center (NARC), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan, +81-29-861-4544, +81-29-861-4545
Get access

Abstract

Supramolecular nanotube hosts with precisely controlled inner or outer diameters have been synthesized by self-assembly of cardanol-based glycolipids, glucopyranosylamide lipids, or glucose-based unsymmetrical bolaamphiphiles. Time-resolved fluorescent measurement using 8-anilinonaphtahalene-1-sulfonate (ANS) as a probe revealed that the water confined in a cardanol-based glycolipid nanotube has relatively lower solvent polarity than bulk water, which corresponds to that of 1-propanol. Extensively developed hydrogen bond networks also characterize the confined water in comparison to the case in bulk water. Encapsulation ability of the glucopyranosylamide lipid nanotube, which depends on capillary action, has been examined by filling the lyophilized lipid nanotubes with aqueous dispersions of gold or silver nanocrystals, ferritin, or magnetic crystals. We have also succeeded in filling the unsymmetrical bolaamphiphile nanotube, which possesses positively charged inner surfaces, with negatively charged polymer beads or ferritin without depending on capillary action.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.(a) Yamada, K., Ihara, H., Ide, T., Fukumoto, T., and Hirayama, C., Chem. Lett. 1713 (1984). (b) P. Yager and P.E. Schoen, Mol. Cryst. Liq. Cryst. 106, 371 (1984). (c) N. Nakashima, S. Asakuma, and T. Kunitake, J. Am. Chem. Soc. 107, 509 (1985). (d) J.M. Schnur, Science 262, 1669 (1993). (e) T. Shimizu, M. Masuda, and H. Minamikawa, Chem. Rev. 105, 1401 (2005).Google Scholar
2. Block, M. A. B., Kaiser, C., Khan, A., and Hecht, S., in Functional Molecular Nanostructures, Topics in Current Chemistry, 245, Springer: Berlin, 2005; Vol. 245, p 89–150.Google Scholar
3. Dujardin, E., Peet, C., Stubbs, G., Culver, J. N., and Mann, S., Nano Lett. 3, 413 (2003).Google Scholar
4. Kamiya, S., Minamikawa, H., Jung, J. H., Yang, B., Masuda, M., and Shimizu, T., Langmuir 21, 743 (2005).Google Scholar
5. Yang, B., Kamiya, S., Yoshida, K., and Shimizu, T., Chem. Commun., 500 (2004).Google Scholar
6. Yang, B., Kamiya, S., Shimizu, Y., Koshizaki, N., and Shimizu, T., Chem. Mater. 16, 2826 (2004).Google Scholar
7. Yui, H., Shimizu, Y., Kamiya, S., Masuda, M., Yamashita, I., Ito, K., and Shimizu, T., Chem. Lett. 34, 232 (2005).Google Scholar
8. John, G., Masuda, M., Okada, Y., Yase, K., and Shimizu, T., Adv. Mater. 13, 715 (2001).Google Scholar
9. John, G., Jung, J. H., Minamikawa, H., Yoshida, K., and Shimizu, T., Chem. Eur. J. 8, 5494 (2002).Google Scholar
10. Yui, H., Koyama, K., Guo, Y., Sawada, T., John, G., Yang, B., Masuda, M., and Shimizu, T., Langmuir 21, 721 (2005).Google Scholar
11. Luzar, A., and Chandler, D., Phys. Rev. Lett. 76, 928 (1996).Google Scholar
12. Luzar, A., and Chandler, D., Nature 379, 55 (1996).Google Scholar
13. Woutersen, S., Emmerichs, U., and Bakker, H. J., Science 278, 658 (1997).Google Scholar
14. Upadhyay, A., Bhatt, T., Tripathi, H. B., and Pant, D. D., J. Photochem. Photobiol., A 89, 201 (1995).Google Scholar
15. Yoshimura, H., Scheybani, T., Baumeister, W., and Nagayama, K., Langmuir 10, 3290 (1994).Google Scholar
16. Yamashita, I., Thin Solid Films 393, 12 (2001).Google Scholar
17. Masuda, H., Hogi, H., Nishio, K., and Matsumoto, F., Chem. Lett. 33, 812 (2004).Google Scholar
18. Fuhrhop, J. H., and Helfrich, W., Chem. Rev. 93, 1565 (1993).Google Scholar
19. Fuhrhop, J.-H., and Koening, J., in Monographs in Supramolecular Chemistry, ed. Stoddart, J. F., The Royal Society of Chemistry: Cambridge, 1994.Google Scholar
20. Fuhrhop, J.-H., and Wang, T., Chem. Rev. 104, 2901 (2004).Google Scholar
21. Masuda, M., and Shimizu, T., Langmuir 20, 5969 (2004).Google Scholar
22. Kameta, N., Masuda, M., Minamikawa, H., Goutev, N. V., Rim, J. A., Jung, J. H., and Shimizu, T., Adv. Mater. 17, 2732 (2005).Google Scholar