Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T14:54:29.079Z Has data issue: false hasContentIssue false

Supplementary Cementitious Materials for Concrete: Characterization Needs

Published online by Cambridge University Press:  22 November 2012

Maria Juenger
Affiliation:
University of Texas at Austin, U.S.A.
John L. Provis
Affiliation:
University of Sheffield, United Kingdom
Jan Elsen
Affiliation:
Katholieke Universiteit Leuven, Belgium
Winnie Matthes
Affiliation:
Holcim Group Support Ltd., Switzerland
R. Doug Hooton
Affiliation:
University of Toronto, Canada
Josée Duchesne
Affiliation:
Université Laval, Canada
Luc Courard
Affiliation:
Université de Liège, Belgium
Huan He
Affiliation:
Université de Liège, Belgium
Frédéric Michel
Affiliation:
Université de Liège, Belgium
Ruben Snellings
Affiliation:
École Polytechnique Fédérale de Lausanne, Switzerland
Nele De Belie
Affiliation:
Universiteit Gent, Belgium
Get access

Abstract

A wide variety of materials are currently used as supplementary cementitious materials (SCMs) for concrete, including natural materials and byproducts from various industries. Historically, natural SCMs, mostly derived from volcanic deposits, were common in concrete. In recent years, the dominant SCMs have been industrial by-products such as fly ash, ground granulated blast furnace slag (GGBFS), and silica fume. There is currently a resurgence of research into historic and natural SCMs, as well as other alternative SCMs for many reasons. The primary benefits of SCM use in improvement of long-term mechanical performance, durability, and sustainability are widely accepted, so local demand for these materials can exceed supply. This paper describes some of the SCMs that are attracting attention in the global research community and the properties and characteristics of these materials that affect their performance. Special attention is paid to the importance and demands of material characterization. Many SCMs do not necessarily lend themselves to characterization methods used in standardized test methods, which sometimes fail to describe the properties that are most important in predicting reactivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Van den Heede, P. and De Belie, N., Cem. Concr. Comp. 34, 431 (2012).CrossRefGoogle Scholar
Schneider, M., Romer, M., Tschudin, M. and Bolioc, H., Cem. Concr. Res. 41, 642 (2011).CrossRefGoogle Scholar
Kosmatka, S.H. and Wilson, M.L., Design and Control of Concrete Mixtures, 15 th ed., (Port. Cem. Assoc., Skokie, IL, 2011).Google Scholar
Scrivener, K.L. and Kirkpatrick, R.J., Cem. Concr. Res. 38, 128 (2008).CrossRefGoogle Scholar
CEMBUREAU, The European Cement Association Activity Report (2011).Google Scholar
Scrivener, K., Am. Ceram. Soc. Bull. 91 (5) 4750 (2012).Google Scholar
Malhotra, V.M., Concr. Int. 28 (9) 42 (2006).Google Scholar
Reynolds, S., The Future of Ferrous Slag, Market Forecasts to 2020, (Pira International Ltd, Leatherhead, UK, 2009).Google Scholar
Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D. and Gartner, E.M., Cem. Concr. Res. 38, 115 (2008).CrossRefGoogle Scholar
Scrivener, K.L, and Nonat, A., Cem. Concr. Res. 41, 651 (2011).Google Scholar
Davis, R.E., Carlson, R.W., Kelly, J.W. and Davis, H.E., J. Am. Concrete. Inst. 33, 577 (1937).Google Scholar
Bouzoubaâ, N., Zhang, M.H., Malhotra, V.M. and Golden, D.M., ACI Mater. J. 96, 641 (1999).Google Scholar
Bouzoubaâ, N. and Lachemi, M., Cem. Concr. Res. 31, 413 (2001).CrossRefGoogle Scholar
Yazıcı, H., Aydın, S., Yiğiter, H. and Baradan, B., Cem. Concr. Res. 35, 1122 (2005).CrossRefGoogle Scholar
Schlorholtz, S., Demirel, T. and Pitt, J.M., Cem. Concr. Res. 14, 499 (1984).CrossRefGoogle Scholar
Cross, D., Stephens, J. and Vollmer, J., (World of Coal Ash, Lexington, KY 2005).Google Scholar
Hemmings, R.T. and Berry, E.E., in Fly Ash and Coal Conversion By-Products: Characterization, Utilization, and Disposal IV, edited by McCarthy, G.J., Glasser, F.P., Roy, D.M. (Mater. Res. Soc. Symp. Proc 113, Warrendale, PA, 1988), pp. 338.Google Scholar
Qian, J.C., Lachowski, E.E. and Glasser, F.P., in Fly Ash and Coal Conversion By-Products: Characterization, Utilization, and Disposal IV, edited by McCarthy, G.J., Glasser, F.P., Roy, D.M. (Mater. Res. Soc. Symp. Proc 113, Warrendale, PA, 1988), pp. 4554 Google Scholar
Brindle, J.H. and McCarthy, M.J., Energ. Fuel 20, 2580 (2006).CrossRefGoogle Scholar
Ward, C.R. and French, D., Fuel 85, 2268 (2006).CrossRefGoogle Scholar
CUAP “Fly Ash for Concrete” (annexe B) (2006) (ETA request No. 0301/34) Google Scholar
Odler, I., Special inorganic cements (E&FN Spon, Taylor& Francis Group, London, 2000).Google Scholar
Luxán, M.P., Sánchez de Rojas, M.I. and Frías, M., Cem. Concr. Res. 19, 69 (1989).CrossRefGoogle Scholar
Mather, B., Cem. Concr. Res. 14, 887 (1984).CrossRefGoogle Scholar
Hill, R.L., Sarkar, S.L., Rathbone, R.F. and Hower, J.C., Cem. Concr. Res. 27, 193 (1997).CrossRefGoogle Scholar
Pedersen, K.H., Jensen, A.D. and Dam-Johansen, K., Combust. Flame 157 (2) 208 (2010).CrossRefGoogle Scholar
Wang, S., Miller, A., Llamazos, E., Fonseca, F. and Baxter, L., Fuel 87, 365 (2008).CrossRefGoogle Scholar
Johnson, A., Catalan, L.J.J. and Kinrade, S.D., Fuel 89, 3042 (2010).CrossRefGoogle Scholar
Duxson, P. and Provis, J.L., J. Am. Ceram. Soc. 91, 3864 (2008).CrossRefGoogle Scholar
Diamond, S., Cem. Concr. Res. 13, 459 (1983).CrossRefGoogle Scholar
Chancey, R.T., Stutzman, P., Juenger, M.C.G. and Fowler, D.W., Cem. Concr. Res. 40, 146 (2010).CrossRefGoogle Scholar
Pietersen, H.S., Fraay, A.L.A. and Bijen, J.M., in Fly Ash and Coal Conversion By-Products VI, edited by Day, R.L. and Glasser, F.P. (Mater. Res. Soc. Symp. Proc. 178, Boston, MA, 1989) pp. 139157.Google Scholar
Brouwers, H.J.H. and van Eijk, R.J., J. Mater.Sci. 37, 2129 (2002).CrossRefGoogle Scholar
Provis, J.L. and van Deventer, J.S.J., Chem. Eng. Sci. 62, 2318 (2007).CrossRefGoogle Scholar
Baert, G., De Belie, N. and De Schutter, G., J. Mater. Civil Eng. 23, 761 (2011).CrossRefGoogle Scholar
Hooton, R.D., Supplementary Cementing Materials, edited by Malhotra, V.M. (CANMET 1987) p. 247.Google Scholar
Schröder, F., Proceedings of the Fifth International Symposium on the Chemistry of Cement, (Tokyo, 1968) vol. IV, p. 149.Google Scholar
Kollo, H. and Geiseler, J., Beton-Informationen, 4, 48 (1987).Google Scholar
Kollo, H., Beton-Informationen 31, 22 (1991).Google Scholar
Smolczyk, H.G., Zement-Kalk-Gips 31 (6), 294 (1978).Google Scholar
Olbrich, E., Struktur und Reaktionsfähigkeit von Hüttensandglas, (PhD Thesis, TU Clausthal, Germany 1999).Google Scholar
Tetmajer, L., Stahl und Eisen, 6, 473 (1886).Google Scholar
De Langavant, J.C., Revue des Matériaux de Construction et de Traveaux Publics, 401, 381 (1949).Google Scholar
Wang, S.-D., Scrivener, K.L., and Pratt, P.L., Cem. Concr. Res. 24, 1033 (1994).CrossRefGoogle Scholar
Schröder, F., Tonmineralogie-Zeitung, 85, (2/3), 39 (1961).Google Scholar
Hooton, R.D., and Emery, J.J., Proceedings, First International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, (ACI SP79, vol. 2, Montebello, Quebec, 1983) p. 943.Google Scholar
Matthes, W., Holcim Group Support Ltd. (private communication).Google Scholar
Farkas, O., Freiberger Forschungshefte, Reihe B, 106, 43 (1951).Google Scholar
Bockris, J.O.M. and Kitchener, J.D., T. Faraday Soc., 51, 1734 (1955).CrossRefGoogle Scholar
Keil, F., Hochofenschlacke, 2 nd edition, (Verlag Stahleisen M.B.H., Düsseldorf 1963).Google Scholar
Demoulian, E., Gourdin, P., Hawthorn, F. and Vernet, C., Proceedings of the Seventh International Congress on the Chemistry of Cement, 2(III) (Paris, 1980) p. 89.Google Scholar
Frigione, G., G. Blended Cements, (ASTM STP 897, 1986) p. 15.CrossRefGoogle Scholar
Wassing, W., Cement I., 5, 94 (2003).Google Scholar
Regourd, M., Thomassin, J.H., Baillif, P. and Touray, J.C., Cem. Concr. Res. 13, 549 (1983).CrossRefGoogle Scholar
Dron, R. and Brivot, F. Proceedings of the Seventh International Conference of Cement and Concrete, 2, III (Paris, 1980) p. 134.Google Scholar
Javelle, P., Cent. Doc. Siderurg., Circ. Inform. Tech., 26 (3) 689 (1969).Google Scholar
Schwiete, H.E. and Dölbor, F.C., Forschungsberichte des Landes Nordrhein-Westfahlen, Deutschland, Nr. 1186, (1963) 119 pp.Google Scholar
Grade, K., Proceedings of the Fifth International Symposium on the Chemistry of Cement, 4, (Tokyo, 1968), p. 168.Google Scholar
Kocaba., V, Gallucci, E., Scrivener, K. (2012) Methods for determination of degree of reaction of slag in blended cement pastes Cement and Concrete Research, Volume 42, Issue , Pages 511525 Google Scholar
Taylor, H.F.W. (1992) Cement Chemistry, Academic Press Ltd., London, 2nd printing, 475 pp.Google Scholar
Poulsen, S.L., Jacobson, H.J., Skibsted, J (2009) Methodologies for measuring the degree of hydration in Portland cement blends with Supplementary Cementitious Materials by 27Al and 29Si MAS NMR Spectroscopy, Proc. 17th Ibausil, Weimar, Germany, 1, 177–188 Google Scholar
Hooton, R.D., Can. J. Civil Eng., 27, 754 (2000).CrossRefGoogle Scholar
ACI 234R-06, “Guide for the Use of Silica Fume in Concrete,” ACI Manual of Concrete Practice. (ACI 2006).Google Scholar
Fidjestol, P., Elkem Materials (private communication).Google Scholar
Nebesar, B. and Carette, G.G., Cem. Concr. Aggr. 8, 42 (1986).Google Scholar
Aïtcin, P.C., Pinsonneault, P., and Roy, D.M., Ceram. Bull., 63, 1487 (1984).Google Scholar
Popovic, K., Ukraincik, V., and Djurekovic, A., Durability Build. Mater., 2 (2) 171 (1984).Google Scholar
Malhotra, V.M., Ramachandran, V.S., Feldman, R.F., and Aïtcin, P.C., Condensed Silica Fume in Concrete, (CRC Press, Inc., Boca Raton, FL, 1987).Google Scholar
Brindley, G.W. and Nakahira, M., J.Am. Ceram. Soc. 42 (7), 311 (1959).CrossRefGoogle Scholar
Sabir, B.B., Wild, S. and Bai, J., Cem. Concr. Comp. 23(6), 441 (2001).CrossRefGoogle Scholar
Lothenbach, B., Scrivener, K. and Hooton, R.D., Cem. Concr. Res. 41, 1244 (2011).CrossRefGoogle Scholar
Collins, D.R., Fitch, A.N. and Catlow, C.R.A., J. Mater. Chem. 1 (6), 965 (1991).CrossRefGoogle Scholar
Lee, S., Kim, Y.J. and Moon, H.S., J. Am. Ceram. Soc. 86 (1), 174 (2003).CrossRefGoogle Scholar
White, C.E., Provis, J.L., Proffen, T., Riley, D.P. and van Deventer, J.S.J., Phys. Chem. Chem. Phys. 12 (13), 3239 (2010).CrossRefGoogle Scholar
White, C.E., Provis, J.L., Proffen, T., Riley, D.P. and van Deventer, J.S.J., J. Phys. Chem. A 114 (14) 4988 (2010).CrossRefGoogle Scholar
Fernandez, R., Martirena, F. and Scrivener, K.L., Cem. Concr. Res. 41, 113 (2011).CrossRefGoogle Scholar
Ambroise, J., Murat, M., and Pera, J., Cem. Concr. Res. 15, 261 (1985).CrossRefGoogle Scholar
He, C., Osbaeck, B. and Makovicky, E., Cem. Concr. Res. 25, 1691 (1995).CrossRefGoogle Scholar
He, C., Makovicky, E. and Osbæck, B., Appl. Clay Sci. 17, 141 (2000)CrossRefGoogle Scholar
Habert, G., Choupay, N., Escadeillas, G., Guillaume, D. and Montel, J.M., Appl. Clay Sci. 43 322 (2009).CrossRefGoogle Scholar
Tironi, A., Trezza, M.A., Scian, A.N. and Irassar, E.F., Const. Build. Mat. 28, 276 (2012).CrossRefGoogle Scholar
Idorn, M.G., Concrete Progress from Antiquity to the Third Millenium (Telford, London 1997).CrossRefGoogle Scholar
Cook, D.J., in Cement Replacement Materials, edited by Swamy, R.N. (Surrey University Press, London 1986) p 139.Google Scholar
Malhotra, V.M. and Mehta, P.K., Pozzolanic and Cementitious Materials (Taylor & Francis 1996).Google Scholar
Colella, C., de Gennaro, M., and Aiello, R., Rev. Mineral Geochem. 45, 551 (2001).CrossRefGoogle Scholar
Massazza, F., in Lea’s Chemistry of Cement and Concrete. Edited by Hewlett, P.C. (Butterworth-Heinemann, Oxford 2001) p 471636.Google Scholar
Massazza, F., in Structure and Performance of Cements, 2 nd ed., edited by Bensted, J. and Barnes, P. P (Spon Press, London 2002) p 326352.Google Scholar
Snellings, R., Mertens, G. and Elsen, J., Rev. Min. Geoch. 74, 211 (2012).CrossRefGoogle Scholar
Ludwig, U. and Schwiete, H.E., Zem-Kalk-Gips 10, 421 (1963).Google Scholar
Mortureux, B., Hornain, H., Gautier, E. and Regourd, M., Proc 7th Int Cong Chem Cement IV:110115 (1980).Google Scholar
Mielenz, R.C., White, L.P. and Glantz, O.J., in Symposium on the Use of Pozzolanic Materials in Mortars and Concrete. ASTM Special Technical Publication 99, 43 (1950)CrossRefGoogle Scholar
Akman, M.S., Mazlum, F. and Esenli, F., Comparative study of natural pozzolans used in blended cement production. ACI Special Publication 132, 471 (1992).Google Scholar
Mehta, P.K., Natural pozzolans: Supplementary cementing materials for concrete. CANMET Special Publication 86, 1 (1987).Google Scholar
Kosson, D.S., van der Sloot, H.A., and Eighmy, T.T., J. Haz. Mater. 47, 43 (1996):CrossRefGoogle Scholar
Bertolini, L., Carsana, M., Cassago, D., Curzio, A.Q. and Collepardi, M., Cem. Concr. Res. 34, 1899 (2004).CrossRefGoogle Scholar
Lam, C.H.K., Ip, A.W.M., Barford, J.P. and McKay, G., Sustainability 2, 1943 (2010).CrossRefGoogle Scholar
Keppert, M., Pavlík, Z., Černý, R. and Reiterman, P., IACSIT Coimbatore Conferences IPCSIT vol. 28 (IACSIT Press, Singapore, 2012) pp. 127131.Google Scholar
Boghetich, G., Liberti, L., Notarnicola, M., Palma, M. and Petruzzelli, D., Waste Manag. Res., 23, 57 (2005).CrossRefGoogle Scholar
Pera, J., Coutaz, L., Ambroise, J., and Chababbet, M., Cem. Concr. Res. 27 (1), 1 (1997).CrossRefGoogle Scholar
Aubert, J.E., Husson, B., Vaquier, A.: Use of municipal solid waste incineration fly ash in concrete, Cem. Concr. Res. 34, 957 (2004).CrossRefGoogle Scholar
Ito, R., Dodbiba, G., Fujita, T., Ahn, J.W., Waste Manag. 28: 1317 (2008).CrossRefGoogle Scholar
Escadeillas, G. Cement modified with limestone fillers: optimization by means of mechanical and physical properties, Doctoral thesis (in French) (Université de Toulouse, 1988).Google Scholar
Courard, L., Degeimbre, R., Darimont, A., Michel, F., Willem, X. and Flamant, St., in ConMat’05 Third International Conference on construction materials: performance, innovations and structural implications, Theme 3-Chapter 5, (Vancouver, Canada, 2005).Google Scholar
Hawkins, P., Tennis, P., Detwiler, R., The Use of Limestone in Portland Cement: A State-of-the-art Review (Portland Cement Association, Skokie, IL 2003).Google Scholar
Matschei, T., Lothenbach, B., Glasser, F.P., Cem. Concr. Res. 37, 551 (2007).CrossRefGoogle Scholar
Lothenbach, B., Le Saout, G., Gallucci, E., and Scrivener, K., Cem. Concr. Res. 38, 848 (2008).CrossRefGoogle Scholar
Michel, F., Physical characterization of limestone fillers, Master’s Thesis (in French) (Université de Liège, Belgium 2006).Google Scholar
Michel, F., Pierard, J., Courard, L. and Pollet, V., in 5th International RILEM Symposium on Self-Compacting Concrete Proceedings PRO 54, edited by De Schutter, G. and Boel, V. (Rilem Publications, Gent, Belgium 2007) p. 205210.Google Scholar
Pirard, E., Vergara, N. and Chapeau, V., in Proceedings of International congress for particle technology (Nuremberg, Gemany 2004).Google Scholar
He, H., Courard, L., Michel, F. and Pirard, E., in Recueil des communications des journees scientifiques du (RF)2B : 2635 (in French) (2012).Google Scholar