Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:56:27.306Z Has data issue: false hasContentIssue false

Substitution effects on the ruthenium, strontium and gadolinium sites in the RuSr2GdCu2O8 compound.

Published online by Cambridge University Press:  01 February 2011

E. Chavira
Affiliation:
IIM-UNAM, AP 70–360, 04510, MEXICO
M. Abatal
Affiliation:
IIM-UNAM, AP 70–360, 04510, MEXICO
C. Filippini
Affiliation:
LEPES-CNRS, 25, Av. Des Martyrs B. P. 166 38042 Grenoble, FRANCE
J. L. Tholence
Affiliation:
LEPES-CNRS, 25, Av. Des Martyrs B. P. 166 38042 Grenoble, FRANCE
V. García-Vázquez
Affiliation:
IF-LRT, BUAP, AP J-48, 72570 Puebla, MEXICO
J. C. Pérez
Affiliation:
IF-LRT, BUAP, AP J-48, 72570 Puebla, MEXICO
A. Sulpice
Affiliation:
CRTBT-CNRS, 25, Av. Des Martyrs B. P. 166 38042 Grenoble, FRANCE
Henri Noël
Affiliation:
LCSIM-CNRS, Av. du Général Leclere, 35042 Rennes, FRANCE.
Get access

Abstract

We present the more relevant results of various cationic substitutions in the RuSr2GdCu2O8 (Ru-1:2:1:2 ) compound. The substitutions were synthesized by solid-state reaction at ambient pressure in the following systems: Ru1−xSr2GdCu2+xO8 (0.0 < x < 1.0), Ru(Sr2-xCax)GdCu2O8 (0 < x < 2.0) and RuSr2(Gd1-xLnx)Cu2O8 (0 < x < 0.9) with Ln = Dy, Ho, Er, Yb and Lu. All of them were isostructural to Ru-1:2:1:2 compound with tetragonal unit cells. The phases have been characterized by X-Ray powder Diffraction (XRD), observing a solid solution (ss ) up to x = 0.4 for Ru ions replaced by Cu ions, x = 0.1 when we substitute Sr atoms by Ca atoms, and x = 0.7 changing Gd ions by Ln ions. As a result of the Scanning Electron Microscopy (SEM), the grain sizes were discovered to be 1 – 10 μm. The Energy Dispersive X-ray spectroscopy (EDX) analysis permitted us to analyze the impurities that we did not detect with XRD. We observed semiconducting, isolated and ferromagnetic behaviors. No superconducting transition could be observed for these ambient preparation conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bauerfeind, L., Widder, W., Braun, H. F., Physica C 254, 151158 (1995).Google Scholar
2. Bauerfeind, L., Widder, W., Braun, H. F., J. Low Temp Phys 105, 16051610 (1996).Google Scholar
3. Felner, I., Asaf, U., Physica C 292, 97103 (1997).Google Scholar
4. Klamut, P.W., Dabrowski, B., Mini, S. M., Maxwell, M., Mais, J.., Felner, I., Asaf, U., Ritter, F., Shengelaya, A., Khasanov, R., Physica C 387, 3339 (2003).Google Scholar
5. Yang, L. T., Liang, J. K., Liu, Q. L., Luo, J., Song, G. B., Liu, F. S., Feng, X. M., Rao, G. H., J. Appl. Phys. 95, 19421944 (2004).Google Scholar
6. Ruiz-Bustos, R., Gallardo-Amores, J. M., Sárez-Punche, R., Morán, E., Alario-Franco, M. A., Physica C 382, 395400 (2002).Google Scholar
7. García-Vázquez, V., Pérez-Amaro, N., Canizo-Cabrera, A., Cumplido-Espíndola, B., Martínez-Hernández, R., Abarca-Ramírez, M. A., Rev. Sci. Instrum. 72, 3332 (2001).Google Scholar
8. Abatal, M., Chavira, E., Filippini, C., Sulpice, A., in process.Google Scholar
9. Sakai, H., Osawa, N., Yoshimura, K., Fang, M., Kosuge, K., Physica C 378–381, 399403 (2002).Google Scholar
10. McLaughlin, A. C., Attfield, J. P., Phys. Rev. B 60, 1460514608 (1999).Google Scholar
11. Beaman, D. R., Isasi, J. A., Special Technical Publication. American Society for Testing and Materials, Electron Beam Microanalysis 506, 2324 (1972).Google Scholar
12. Shannon, R. D., Acta Cryst. A 32, 751 (1976).Google Scholar