Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T01:46:26.807Z Has data issue: false hasContentIssue false

Structural, Optical and Magnetic properties of Co-doped ZnO Nanopowders

Published online by Cambridge University Press:  14 January 2011

Segundo R. Jáuregui-Rosas
Affiliation:
Laboratorio de Física de Materiales, Departamento de Física, Universidad Nacional de Trujillo, Juan Pablo II Av. S/N, Trujillo - Peru.
Oscar J. Perales-Perez
Affiliation:
Department of Engineering Science and Materials, University of Puerto Rico, Mayagüez, Puerto Rico 00681-9044, USA
Lourdes A. Noriega
Affiliation:
Escuela de Física, Universidad Nacional de Trujillo, Juan Pablo II Av. S/N, Trujillo - Peru.
Luis A. Castillo
Affiliation:
Escuela de Física, Universidad Nacional de Trujillo, Juan Pablo II Av. S/N, Trujillo - Peru.
Get access

Abstract

Nanocrystalline Zn1-xCoxO powders exhibiting a preferential crystal growth along the (002) plane have been synthesized in the atomic fraction, ‘x’, range of 0.0-0.0625 by a wet chemical method. The effect of the dopant concentration on the corresponding structural, optical and magnetic properties was also evaluated. XRD analyses evidenced the development of single-phase wurtzite with no traces of any impurity for all the dopant levels. The higher intensity of the (002) peak, when compared to the XRD peaks in bulk ZnO, indicates the preferential crystal growth along the c-axis in hexagonal wurtzite cell. The linear dependence of cell parameters a and c with ‘x’ suggests the actual replacement of Zn by Co ions in the host oxide lattice. Micro Raman spectroscopy measurements showed a band centered at 535cm-1, which can be assigned to a local vibrational mode related to Co species in addition to the normal modes associated with wurtzite. The relative broadening of this band at 535cm-1 was enhanced by increasing ‘x’. The other characteristic bands of ZnO corresponding to A1 (E2, E1) and E2High modes were red shifted for all Co contents. UV-vis measurements showed that the energy band gap of as-synthesized nanopowders decreased with increasing Co2+ content up to x = 0.03 and increased for higher contents. Room-temperature magnetization measurements revealed the paramagnetic behavior of the Co-doped ZnO nanopowders.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dietl, T., et al. , Science 287 (2000) 10191022 Google Scholar
[2] Sato, K. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. Part 2, 39 (2000) L555L558 Google Scholar
[3] Che, P., et al. , J. Magn. Magn. Mater. 320 (2008) 25632566 Google Scholar
[4] Phan, The-Long, et al. , Appl. Phys. Lett. 93 (2008) 082110 Google Scholar
[5] Wang, B., et al. , Solid State Sciences 11 (2009) 14191422 Google Scholar
[6] Johnson, C.A., et al. , Phys. Rev. B 81 (2010) 125206 Google Scholar
[7] Jáuregui-Rosas, Segundo R., Perales-Perez, O., et al. , in Zinc Oxide and Related Materials-2009, edited by Durbin, Steve, Allen, Martin, and Wenckstern, Holger von, (Mater. Res. Soc. Symp. Proc. Volume 1201, Warrendale, PA, 2010), p. 1201-H10-34 Google Scholar
[8] Bhargava, R., et al. , Mater. Chem. Phys. 120 (2010) 393398 Google Scholar
[9] Cong, C.J., et al. , Mater. Chem. Phys. 113 (2009) 435440 Google Scholar
[10] Boubekri, R., et al. , Chem. Mater. 21 (2009) 843855 Google Scholar
[11] Qiu, X., et al. , Nanotechnology 19 (2008) 215703 Google Scholar
[12] Rehman, S., Hazard, J.. Mater. 170 (2009) 560569 Google Scholar
[13] Zhang, X.L., et al. , Current Appl. Phys. 6 (2006) 796800 Google Scholar
[14] Zhang, Y.B., et al. , Phys. Rev. B 73 (2006) 172404 Google Scholar
[15] Duan, L.B., et al. , Solid State Commun. 145 (2008) 525528 Google Scholar
[16] Shannon, R.D., Acta Cryst. A 32 (1976) 751767 Google Scholar
[17] Wang, X., et al. , Adv. Mater. 18 (2006) 24762480 Google Scholar
[18] Samanta, K., et al. , Phys. Rev. B 73 (2006) 245213 Google Scholar
[19] Koidl, P., Phys. Rev. B 15 (1977) 24932499 Google Scholar
[20] Venkataprasad Bhat, S. and Deepak, F.L., Solid State Commun. 135 (2005) 345347 Google Scholar
[21] Kim, K.J. and Park, Y.R., Appl. Phys. Lett., 81 (2002) 14201422 Google Scholar
[22] Spaldin, N.A., Phys. Rev. B 69 (2004) 125201 Google Scholar