Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T11:53:50.536Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of Cu64Zr36 BMG by ab initio Molecular Dynamics

Published online by Cambridge University Press:  25 January 2013

Jonathan Galván-Colín
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D. F. 04510, México
Ariel A. Valladares
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D. F. 04510, México
Alexander Valladares
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D. F. 04510, México
Renela M. Valladares
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D. F. 04510, México
Get access

Abstract

Much attention has been given to bulk metallic glasses (BMG) in recent years, particularly those based on binary alloys due to the simplicity of their atomic composition. Although efforts to understand the atomistic features that give rise to their exceptional properties have been made, the electronic and vibrational properties have been disregarded. We undertook the task of simulating the Cu64Zr36 glassy metal using a supercell with 108 atoms and a different simulational approach: the undermelt-quench approach [1]. The structure was characterized by means of the radial (pair) distribution function and the bond-angle distribution and the electronic density of states was calculated. We find that our results agree well with experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Valladares, A. A., J. Non-Cryst. Solids 353, 3540 (2007).10.1016/j.jnoncrysol.2007.05.112CrossRefGoogle Scholar
Xu, D., Lohwongwatana, B., Duan, G., Johnson, W. L., Garland, C., Acta Mater. 52, 2621 (2004).10.1016/j.actamat.2004.02.009CrossRefGoogle Scholar
Wang, D., Li, Y., Sun, B. B., Sui, M. L., Lu, K., Ma, E., App. Phys. Lett. 84, 4029 (2004).10.1063/1.1751219CrossRefGoogle Scholar
Wang, W. H., Lewandowski, J. J., Greer, A. L., J. Mater. Res. 20, 2307 (2005).10.1557/jmr.2005.0302CrossRefGoogle Scholar
Duan, G., Xu, D., Zhang, Q., Zhang, G., Cagin, T., Johnson, W. L., Goddard, W. A., Phys. Rev. B 71, 224208 (2005).10.1103/PhysRevB.71.224208CrossRefGoogle Scholar
Mattern, N., Schöps, A., Kühn, U., Acker, J., Khvostikova, O., Eckert, J., J. Non-Cryst. Solids 354, 1054 (2008); N. Mattern, P- Jóvari, I. Kaban, S. Gruner, A. Elsner, V. Kokotin, H. Franz, B. Beuneu, J. Eckert, J. Alloys Compd. 485, 163(2009).Google Scholar
Wang, X. D., Yin, S., Cao, P., Jiang, J. Z., Franz, H., Jin, Z. H., App. Phys. Lett. 92, 011902 (2008).10.1063/1.2828694CrossRefGoogle Scholar
Yang, L., Xia, J. H., Wang, Q., Dong, C., Chen, L. Y., Ou, X., Liu, J. F., Jiang, J. Z., Klementiev, K., Saksl, K., Franz, H., Schneider, J. R., Gerward, L., App. Phys. Lett. 88, 241913 (2006).10.1063/1.2213020CrossRefGoogle Scholar
Jakse, N., Pasturel, A., Phys. Rev. B 78, 214204 (2008).10.1103/PhysRevB.78.214204CrossRefGoogle Scholar
Álvarez, F, Díaz, C. C., Valladares, A. A., Valladares, R. M., Phys. Rev. B 65, 113108 (2002); F. Álvarez. A. A. Valladares, Phys. Rev. B 68, 205203(2003).10.1103/PhysRevB.65.113108CrossRefGoogle Scholar
Romero, C., Mata, Z., Lozano, M., Barrón, H., Valladares, R. M., Álvarez, F., Valladares, A. A., J. Non-Cryst. Solids 338, 513 (2004).10.1016/j.jnoncrysol.2004.03.031CrossRefGoogle Scholar
Mejía-Mendoza, L. M., Valladares, R. M., Valladares, A. A., Molecular Simulation 34, 989 (2008).10.1080/08927020802454844CrossRefGoogle Scholar
Díaz-Celaya, J. A., Valladares, A. A., Valladares, R. M., Intermetallics 18, 1818 (2010).10.1016/j.intermet.2010.02.050CrossRefGoogle Scholar
Hafner, J., J. Phys. F: Met. Phys. 12 (1982) L205209; J. Hafner, J. Phys. Colloque C9 46, 69(1985).10.1088/0305-4608/12/11/001CrossRefGoogle Scholar
Delley, B., J. Chem. Phys. 92 (1990) 508517; B. Delley, J. Chem. Phys. 113, 7756(2000).10.1063/1.458452CrossRefGoogle Scholar
Perdew, J. P., Wang, Y., Phys. Rev. B 45, 13244 (1992).10.1103/PhysRevB.45.13244CrossRefGoogle Scholar
Subramanian, P. R., Chakrabarti, D. J., Laughlin, D. E., Phase Diagrams of Binary Copper Alloys, Ohio: Materials Information Society (1994).Google Scholar
Valladares, A. A., Díaz-Celaya, J. A., Galván-Colín, J., Mejía-Mendoza, L. M., Reyes-Retana, J. A., Valladares, R. M., Valladares, A, Álvarez-Ramírez, F., Qu, D., Shen, J., Materials 4, 716 (2011).10.3390/ma4040716CrossRefGoogle Scholar
Galván-Colín, J., Valladares, A. A., Valladares, A., Valladares, R. M., submitted .Google Scholar