Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T00:48:29.470Z Has data issue: false hasContentIssue false

Stretched Exponential Stress Relaxation in a Thermally Reversible, Physically Associating Block Copolymer Solution

Published online by Cambridge University Press:  21 February 2012

Kendra A. Erk
Affiliation:
Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60202 Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Jack F. Douglas
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

The shear stress relaxation of a thermally reversible, physically associating solution formed from a triblock copolymer in solvent selective for the mid-block was found to be well described over a broad temperature range by a stretched exponential function with a temperature independent ‘stretching exponent’, β ≈ 1/3. This same exponent value has been suggested to have particular significance in describing structural relaxation in a wide range of disordered viscoelastic materials ranging from associating polymer materials (‘gels’) to glass-forming liquids. We quantify the temperature dependence of the high frequency, or short time, shear modulus as function of temperature and find that this property also follows a variation often observed in gels and glass-forming materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Palmer, R. G., Stein, D. L., Abrahams, E., and Anderson, P. W., Phys. Rev. Lett. 53, 958961 (1984).CrossRefGoogle Scholar
[2] Séréro, Y., Jacobsen, V., Berret, J. F., and May, R., Macromolecules 33, 18411847 (2000).CrossRefGoogle Scholar
[3] Hotta, A., Clarke, S. M., and Terentjev, E. M., Macromolecules 35, 271277 (2002).CrossRefGoogle Scholar
[4] Erk, K. A. and Shull, K. R., Macromolecules 44, 932939 (2011).CrossRefGoogle Scholar
[5] Seitz, M. E., Burghardt, W. R., Faber, K. T., and Shull, K. R., Macromolecules 40, 12181226 (2007).CrossRefGoogle Scholar
[6] Bras, R. E. and Shull, K. R., Macromolecules 42, 85138520 (2009).CrossRefGoogle Scholar
[7] Erk, K. A., Martin, J. D., Hu, Y. T., and Shull, K. R., Accepted by Langmuir (2012).Google Scholar
[8] Baumberger, T., Caroli, C., and Martina, D., Nature Materials 5, 552555 (2006).CrossRefGoogle Scholar
[9] Erk, K. A., Henderson, K. J., and Shull, K. R., Biomacromolecules 11, 13581363 (2010).CrossRefGoogle Scholar
[10] Koga, T., Tanaka, F., Kaneda, I., and Winnik, F. M., Langmuir 25, 86268638 (2009).CrossRefGoogle Scholar
[11] Gurtovenko, A. A. and Gotlib, Y. Y., J. Chem. Phys. 115, 67856793 (2001).CrossRefGoogle Scholar
[12] Cavicchi, K. A. and Lodge, T. P., Macromolecules 36, 71587164 (2003).CrossRefGoogle Scholar
[13] Choi, S. H., Lodge, T. P., and Bates, F. S., Phys. Rev. Lett. 104, 4 (2010).Google Scholar
[14] Stukalin, E. B., Douglas, J. F., and Freed, K. F., Journal of Chemical Physics 129, (2008).CrossRefGoogle Scholar
[15] Douglas, J. F. and Hubbard, J. B., Macromolecules 24, 31633177 (1991).CrossRefGoogle Scholar
[16] Rehage, H. and Hoffmann, H., Mol. Phys. 74, 933973 (1991).10.1080/00268979100102721CrossRefGoogle Scholar
[17] Bartsch, E., Antonietti, M., Schupp, W., and Sillescu, H., J. Chem. Phys. 97, 39503963 (1992).CrossRefGoogle Scholar
[18] Alegria, A., Colmenero, J., Mari, P., and Campbell, I., Phys. Rev. E 59, 68886895 (1999).CrossRefGoogle Scholar
[19] Struik, L. C. E., Aging in Amorphous Polymers and Other Materials (Elsevier, New York, 1978). See Fig. 34 for creep data for diverse materials.Google Scholar
[20] Lin, D. C., Douglas, J. F., and Horkay, F., Soft Matter 6, 3548 (2010).CrossRefGoogle Scholar
[21] Douglas, J. F., Dudowicz, J., and Freed, K. F., J. Chem. Phys. 128, (2008).CrossRefGoogle Scholar
[22] Peleg, M., Rheol. Acta 32, 575580 (1993).CrossRefGoogle Scholar
[23] Peleg, M., Cereal Chem. 73, 712715 (1996).Google Scholar
[24] Nakanishi, S., Yoshikawa, H., Shoji, S., Sekkat, Z., and Kawata, S., J. Phys. Chem. B 112, 35863589 (2008).CrossRefGoogle Scholar
[25] Kumar, S. K. and Douglas, J. F., Phys. Rev. Lett. 87, 4 (2001).Google Scholar