Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T10:04:48.566Z Has data issue: false hasContentIssue false

Single-Mode Superconductivity in LaAlO3/SrTiO3 Nanostructures

Published online by Cambridge University Press:  10 April 2013

Joshua P. Veazey
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Guanglei Cheng
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Patrick Irvin
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Shicheng Lu
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Mengchen Huang
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Feng Bi
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Chung-Wung Bark
Affiliation:
University of Wisconsin-Madison,Madison, WI 53706, U.S.A.
Sangwoo Ryu
Affiliation:
University of Wisconsin-Madison,Madison, WI 53706, U.S.A.
Kwang-Hwan Cho
Affiliation:
University of Wisconsin-Madison,Madison, WI 53706, U.S.A.
Chang-Beom Eom
Affiliation:
University of Wisconsin-Madison,Madison, WI 53706, U.S.A.
Jeremy Levy
Affiliation:
University of Pittsburgh, Pittsburgh, PA 15260, U.S.A.
Get access

Abstract

The properties of superconductors at the extreme limits of dimensionality are of fundamental interest. The interface of LaAlO3 and SrTiO3 hosts a quasi-two-dimensional superconductor below Tc≈200 mK. Here we report superconductivity in nanowire-shaped structures created at the LaAlO3/SrTiO3 interface using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3 (w <<ξSC∼100 nm), placing them in the quasi-1D regime. The ability to “write” fully superconducting nanostructures on an insulating LaAlO3/SrTiO3 “canvas” opens possibilities for the development of new families of superconducting nanoelectronics. Four-terminal transport measurements suggest that in some devices both the normal and superconducting states are confined to a single quantum channel.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nakamura, Y., Pashkin, Y. A. and Tsai, J. S., Nature 398, 786788 (1999).CrossRefGoogle Scholar
Kitaev, A. Y., Physics-Uspekhi 44, 131136 (2001).CrossRefGoogle Scholar
Alicea, J., Rep. Prog. Phys. 75, 076501 (2012).CrossRefGoogle Scholar
Sau, J. D., Lutchyn, R. M., Tewari, S. and Das Sarma, S., Phys. Rev. Lett. 104, 040502 (2010).CrossRefGoogle Scholar
Alicea, J., Phys. Rev. B 81, 125318 (2010).CrossRefGoogle Scholar
Lutchyn, R., Sau, J. and Das Sarma, S., Phys. Rev. Lett. 105, 077001 (2010).CrossRefGoogle Scholar
Mourik, V., Zuo, K., Frolov, S. M., Plissard, S. R., Bakkers, E. P. A. M. and Kouwenhoven, L. P., Science 336, 10031007 (2012).CrossRefGoogle Scholar
Rokhinson, L., Liu, X. and Furdyna, J., Nature Phys. 8, 795799 (2012).CrossRefGoogle Scholar
Reyren, N., Thiel, S., Caviglia, A. D., Kourkoutis, L. F., Hammerl, G., Richter, C., Schneider, C. W., Kopp, T., Ruetschi, A.-S., Jaccard, D., Gabay, M., Muller, D. A., Triscone, J.-M. and Mannhart, J., Science 317, 11961199 (2007).CrossRefGoogle Scholar
Caviglia, A. D., Gariglio, S., Reyren, N., Jaccard, D., Schneider, T., Gabay, M., Thiel, S., Hammerl, G., Mannhart, J. and Triscone, J. M., Nature 456, 624–624 (2008).CrossRefGoogle Scholar
Brinkman, A., Huijben, M., Van Zalk, M., Huijben, J., Zeitler, U., Maan, J. C., Van der Wiel, W. G., Rijnders, G., Blank, D. H. A. and Hilgenkamp, H., Nature Mat. 6, 493496 (2007).CrossRefGoogle Scholar
Ariando, , Wang, X., Baskaran, G., Liu, Z. Q., Huijben, J., Yi, J. B., Annadi, A., Barman, A. R., Rusydi, A., Dhar, S., Feng, Y. P., Ding, J., Hilgenkamp, H. and Venkatesan, T., Nature Comm. 2, 188 (2011).CrossRefGoogle Scholar
Veazey, J. P., Cheng, G., Irvin, P., Cen, C., Bogorin, D., Bi, F., Huang, M., Bark, C.-w., Ryu, S., Cho, K.-H., Eom, C.-B. and Levy, J., arXiv:1210.3606 (2012).Google Scholar
Cen, C., Thiel, S., Hammerl, G., Schneider, C. W., Andersen, K. E., Hellberg, C. S., Mannhart, J. and Levy, J., Nature Mat. 7, 298302 (2008).CrossRefGoogle Scholar
Cen, C., Thiel, S., Mannhart, J. and Levy, J., Science 323, 10261030 (2009).CrossRefGoogle Scholar
Tinkham, M., Free, J. U., Lau, C. N. and Markovic, N., Phys. Rev. B 68, 134515 (2003).CrossRefGoogle Scholar
Tinkham, M., Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1995).Google Scholar
Schooley, J., Hosler, W. and Cohen, M., Phys. Rev. Lett. 12, 474475 (1964).CrossRefGoogle Scholar
Giordano, N., Phys. Rev. Lett. 61(18), 21372140 (1988).CrossRefGoogle Scholar
Lau, C., Markovic, N., Bockrath, M., Bezryadin, A. and Tinkham, M., Phys. Rev. Lett. 87, 217003 (2001).CrossRefGoogle Scholar
Arutyunov, K. Y., Golubev, D. S. and Zaikin, A. D., Phys. Rep. 464, 170 (2008).CrossRefGoogle Scholar
Langer, J. and Ambegaokar, V., Phys. Rev. 164, 498510 (1967).CrossRefGoogle Scholar
McCumber, D. and Halperin, B., Phys. Rev. B 1, 10541070 (1970).CrossRefGoogle Scholar
Caviglia, A. D., Gabay, M., Gariglio, S., Reyren, N., Cancellieri, C. and Triscone, J.-M., Phys. Rev. Lett. 104, 126803 (2010).CrossRefGoogle Scholar
Beenakker, C. W. and van Houten, H., Phys. Rev. Lett. 66, 30563059 (1991).CrossRefGoogle Scholar
Beenakker, C., Phys. Rev. B 46, 1284112844 (1992).CrossRefGoogle Scholar
Lesovik, G. B., Martin, T. and Blatter, G., Eur. Phys. J. B 24, 287290 (2001).CrossRefGoogle Scholar