Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T02:04:44.719Z Has data issue: false hasContentIssue false

Shape Evolution of Faceted Silicon Nanocrystals upon Thermal Annealing in an Oxide Matrix

Published online by Cambridge University Press:  18 July 2013

Zhenyu Yang
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
Alexander R. Dobbie
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
Jonathan G. C. Veinot
Affiliation:
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
Get access

Abstract

It is well established that controlled high-temperature annealing of hydrogen silsesquioxane leads to the formation of small spherical silicon nanocrystals (∼3 nm). The present study outlines an investigation into the influence of annealing time and temperature. After prolonged annealing, crystal surfaces thermodynamically self-optimize to form a variety of faceted structures (e.g., cubic, truncated trigonal and hexagonal structures).

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Maltzahn, G.v., Park, J.H., Lin, K.Y., Singh, N., Schwöppe, C., Mesters, R., Berdel, W.E., Ruoslahti, E., Sailor, M.J., and Bhatia, S.N., Nat. Mater. 10, 545 (2011).10.1038/nmat3049CrossRefGoogle Scholar
Holman, Z.C., Liu, C., and Kortshagen, U., Nano Lett. 10, 2661 (2010).10.1021/nl101413dCrossRefGoogle Scholar
Erogbogbo, F., Yong, K.T., Roy, I., Xu, G.X., Prasad, P.N., and Swihart, M.T., ACS Nano 2, 873 (2008).10.1021/nn700319zCrossRefGoogle Scholar
Chen, X., Shen, S., Guo, L., and Mao, S.S., Chem. Rev. 110, 6503 (2010).CrossRefGoogle Scholar
Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A., Chem. Rev. 105, 1025 (2005).10.1021/cr030063aCrossRefGoogle Scholar
Zhuang, Z., Peng, Q., and Li, Y., Chem. Soc. Rev. 40, 5492 (2011).10.1039/c1cs15095bCrossRefGoogle Scholar
Pettigrew, K.A., Liu, Q., Power, P.P., and Kauzlarich, S.M., Chem. Mater. 15, 4005 (2003).10.1021/cm034403kCrossRefGoogle Scholar
Li, X., He, Y., and Swihart, M.T., Langmuir 20, 4720 (2004).CrossRefGoogle ScholarPubMed
Warner, J.H., Hoshino, A., Yamamoto, K., and Tilley, R.D., Angew. Chem., Int. Ed. 44, 4550 (2005).10.1002/anie.200501256CrossRefGoogle Scholar
Hessel, C.M., Reid, D., Panthani, M.G., Rasch, M.R., Goodfellow, B.W., Wei, J., Fujii, H., Akhavan, V., and Korgel, B.A., Chem. Mater. 24, 393 (2012).CrossRefGoogle Scholar
Baldwin, R.K., Pettigrew, K.A., Garno, J.C., Power, P.P., and Kauzlarich, S.M., J. Am. Chem. Soc. 124, 1150 (2002).10.1021/ja017170bCrossRefGoogle Scholar
Barrett, C.A., Dickinson, C., Ahmed, S., Hantschel, T., Arstila, K., Ryan, K.M., Nanotechnology 20, 275605 (2009).CrossRefGoogle Scholar
Bapat, A., Anderson, C., Perrey, C.R., Carter, C.B., Campbell, S.A., and Kortshagen, U., Plasma Phys. Control. Fusion 46, B97 (2004).10.1088/0741-3335/46/12B/009CrossRefGoogle Scholar
Hessel, C.M., Henderson, E.J., and Veinot, J.G.C., Chem. Mater. 18, 6139 (2006).10.1021/cm0602803CrossRefGoogle Scholar
Hessel, C.M., Henderson, E.J., and Veinot, J.G.C., J. Phys. Chem. C 111, 6956 (2007).CrossRefGoogle Scholar
Yang, Z., Dobbie, A.R., Cui, K, and Veinot, J.G.C., J. Am. Chem. Soc. 134, 13958 (2012).CrossRefGoogle Scholar
Heath, J.R., Science 258, 1131 (1992).10.1126/science.258.5085.1131CrossRefGoogle Scholar