Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:45:17.750Z Has data issue: false hasContentIssue false

Sequence Specific Force Curves Measured by Mechanically Opening the DNA Double Helix

Published online by Cambridge University Press:  15 February 2011

U. Bockelmann
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Normale Supérieure 24 rue Lhomond, 75005 Paris, France, ulrich@physique.ens.fr
B. Essevaz-Roulet
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Normale Supérieure 24 rue Lhomond, 75005 Paris, France, ulrich@physique.ens.fr
F. Heslot
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Normale Supérieure 24 rue Lhomond, 75005 Paris, France, ulrich@physique.ens.fr
Get access

Abstract

Using techniques of molecular biology, we have designed a molecular construction which allows to attach the two complementary strands of one end of a single molecule of bacteriophage λ DNA separately to a glass microscope slide and a microscopic bead. A soft microneedle acting as a force sensor is chemically attached to the bead and its deflection is measured by an optical microscope. Keeping the base of the force lever fixed, the glass slide is displaced slowly, leading to a progressive opening of the double helix. The force measured during the opening process shows a characteristic variation which is related to the sequence of the bases along the DNA molecule. We present a brief summary of the present state of our work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, S. B., Finzi, L. and Bustamante, C., Science 258, 1122 (1992).Google Scholar
2. Smith, S. B., Cui, Y. and Bustamante, C., Science 271, 795 (1996).Google Scholar
3. Cluzel, Ph., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L;, Chatenay, D. and Caron, F., Science 271, 792 (1996).Google Scholar
4. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. and Croquette, V., Science 272, 1835 (1996)Google Scholar
5. Wang, M. D., Yin, H., Landick, R., Gelles, J. and Block, S. M., Biophys. J. 72, 1335 (1997)Google Scholar
6. Essevaz-Roulet, B., Bockelmann, U. and Heslot, F., Proc. Natl. Acad. Sci. USA 94, 11935 (1997).Google Scholar
7. Bockelmann, U., Essevaz-Roulet, B. and Heslot, F., Phys. Rev. Lett. 79, 4489 (1997).Google Scholar
8. Bockelmann, U., Essevaz-Roulet, B. and Heslot, F., Phys. Rev. E, (in press).Google Scholar
9. Bowden, P. and Tabor, D., Friction and Lubrication of Solids (Clarendon, Oxford 1950).Google Scholar
10. Scholz, Ch., The Mechanics of Earthquakes and Faulting (Cambridge University Press, Cambridge, 1990).Google Scholar
11. Baumberger, T., Heslot, F. and Perrin, B., Nature 367, 544 (1994).Google Scholar