No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Green manufacturing technology has become a significant innovative keyword to reduce the environmental burden and CO2 emission at the stage of manufacturing and production. In daily operations by machining, huge amount of lubricating oils and cleansing agents is wasted so that dry machining technology provides us a way to completely reduce these wastes. Among several candidates, self-lubrication via in-situ formation of lubricious oxide films is accommodated to protective coatings in order to attain low friction and wear state even at higher cutting speed range. Materials science of in-situ formed lubricious oxide tribofilms is stated with consideration of accommodation mechanism via the chlorine implantation. Mechanical characterization is made for evaluation on elasto-plastic deformation of lubricious oxides. Turning test is employed to evaluate dry machinability of various tools for wide range of cutting speed. Self-lubrication in dry machining is described both for bare WC and TiCN-coated WC tools with and without chlorine implantation. Precise microstructure analyses are made by using the laser microscope, EDS and XPS. In-situ formation of lubricous oxides proves that self-lubrication process takes place even in dry machining to reduce the flank wear and friction coefficient.