Published online by Cambridge University Press: 01 February 2011
The role of the molecular structure - different functional groups, the length of the carbon chain and the relative positions of different functional groups – of several complexing/chelating agents (acetic acid, glycine, ethylene diamine, succinic acid, alanine and amino butyric acid (ABA)) in controlling copper (Cu) removal rates was investigated. The results are consistent with the known activity of –COOH groups at acidic conditions and that of –NH2 groups in an alkaline environment. In comparison with glycine, it was also observed that an increase in the carbon chain length increased the removal rates at acidic pH values and decreased the removal rates at alkaline pH values. Also, Cu removal rates decreased with an increase in the distance between the –NH2 and –COOH groups in an amino acid at all pH values except at 4.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.