Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T01:29:20.770Z Has data issue: false hasContentIssue false

Quantitative Characterization of the Interface Between a V2O3 Layer and Cu3Au (001) by Cs Corrected HREM

Published online by Cambridge University Press:  31 January 2011

Hector Alfredo Calderon
Affiliation:
hcalder@esfm.ipn.mxjektore@hotmail.com, IPN, Ciencia de Materiales-ESFM, UPALM Ed. 9 Zacatenco, Mexico DF, Mexico, 07738, Mexico, 5215516916964, 525521572506
Horst Niehus
Affiliation:
horst_niehus@yahoo.de, Humboldt Universität zu Berlin, Inst. für Physik, Berlin, Germany
B. Freitag
Affiliation:
Bert.Freitag@fei.com, FEI Company, Eindhoven, Netherlands
D. Wall
Affiliation:
d_wall@fakeemail.com, FEI Company, Eindhoven, Netherlands
Fernando Stavale
Affiliation:
stavale@metalmat.ufrj.br, Div. Metrologia de Materiais (DIMAT), Xerem, Brazil
Carlos Achete
Affiliation:
achete@metalmat.ufrj.br, INMETRO, DIMAT, Rio de Janeiro, Brazil
Get access

Abstract

Vanadium oxides are materials of interest due to their electronic, magnetic and catalytic properties. In the case of V2O3 and Cu3Au, the interfacial bonding is rather difficult to describe since the two component materials have strongly different electronic structures. Thus a local investigation of the interface becomes important. In this investigation, the incoherent interface between a V2O3 (0001, corundum structure) layer and a Cu3Au (001, L12 structure) substrate is characterized with the help of image corrected high resolution electron microscopy (HRTEM) and focal series reconstruction in order to investigated both the true position of atoms and the nature of the atomic species. Semi-quantitative results can be shown for the chemical composition of columns and strains at one side of the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henrich, V.E., Cox, P.A., The surface science of metal oxides, U. Press, Cambridge, 1994.Google Scholar
2. Hermann, K., Witko, M., in The chemical physics of solid surfaces: Oxide surfaces, vol. 9, Ed. Woodruff, D.P., Elsevier, Amsterdam, 2001.Google Scholar
3. Somorjai, G.A., Introduction to Surface Catalysis, Wiley, New York, 1994.Google Scholar
4. Blum, R.-P. et al., Phys. Rev. Let. 99, 226103 (2007).Google Scholar
5. Mattsson, A.E., Jennison, D.R., Surf. Sci. 520, L611 (2002).Google Scholar
6. Middeke, J., Blum, R.-P., Hafemeister, M., Niehus, H., Surf. Sci. 587, 327 (2005).Google Scholar
7. Czekaj, I., Hermann, K., Witko, M., Surf. Sci. 545, 85 (2003).Google Scholar
8. Dupuis, A.-C. et al., Surf. Sci. 539, 99 (2003).Google Scholar
9. Niehus, H., Blum, R.-P., Ahlbehrendt, D., Phys. Status Solidi (a) 187, 151 (2001).Google Scholar
10. Niehus, H. in The chemical physics of solid surfaces: Oxide surfaces, vol. 9, Ed. Woodruff, D.P., Elsevier, Amsterdam, 2001.Google Scholar
11. Niehus, H., Achete, C., Surf.Sci. 289, 19 (1993).Google Scholar
12. Coene, W. M. J. et al., , Ultramicroscopy 64, 109 (1996).Google Scholar
13. Niehus, H. et al., Surface Science 602, L59 (2008).Google Scholar