Published online by Cambridge University Press: 15 February 2011
Ferroelectric SrBi2Ta2U9 (SBT) thin films were synthesized by pulsed laser deposition (PLD) on platinized silicon substrates held at different substrate temperatures, from targets with different compositions. It was necessary to anneal films deposited at low temperature (525°C) at elevated temperatures in an oxygen atmosphere in order to achieve properties comparable to SBT thin films grown by the sol-gel technique. Polarization – electric field hysteresis loops showed saturation in the 2-5 V range with a remnant polarization 2Pr = 8-13 µC/cm2. Capacitors showed negligible fatigue up to 1010 switching cycles.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.