Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:57:01.987Z Has data issue: false hasContentIssue false

Pulsed Laser Deposition of Silicon Nanostructures

Published online by Cambridge University Press:  21 September 2011

P. Bruno
Affiliation:
Center for Nano Science and Technology –IIT@PoliMI, via Pascoli 70/3, 20133 Milano, Italy.
T. Salve
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy.
V. Russo
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy.
D. Dellasega
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy.
G. Filoni
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy.
C.S. Casari
Affiliation:
Center for Nano Science and Technology –IIT@PoliMI, via Pascoli 70/3, 20133 Milano, Italy. Dipartimento di Energia and NEMAS – Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy.
C.E. Bottani
Affiliation:
Center for Nano Science and Technology –IIT@PoliMI, via Pascoli 70/3, 20133 Milano, Italy. Dipartimento di Energia and NEMAS – Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy.
A. Li Bassi
Affiliation:
Center for Nano Science and Technology –IIT@PoliMI, via Pascoli 70/3, 20133 Milano, Italy. Dipartimento di Energia and NEMAS – Center for NanoEngineered MAterials and Surfaces, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy.
Get access

Abstract

Silicon nanostructures embedded in an amorphous matrix have been synthesized by Pulsed Laser Deposition (PLD) at room temperature. The structural and optical properties of the materials were tailored by varying deposition parameters; attention has been devoted to the nanoscale morphology of the Si layers which has been varied from compact to open-porous by changing background gas (Ar) pressure (1-100 Pa). An adopted simple-minded strategy of a compact Si layer deposited on top of nanostructured layers showed to reduce quite successfully ex-situ oxidation. Raman spectroscopy suggests that as deposited samples are mainly constituted by amorphous silicon with nanocrystals (NCs) inclusions. The results indicate that the average size of the Si NCs varies in the range 2-6 nm. Photoluminescence (PL) responses are found to be strictly dependent on morphology and strengthen up the idea of the quantum confinement effect in the obtained nanostructured material. The results are interpreted in terms of particle size distribution, crystallinity and partial surface oxidation of the silicon nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Pavesi, L., Negro, L.D., Mazzoleni, C., Franzo, G., Priolo, F., Nature 408, 440 (2000).Google Scholar
3. Toyama, T., Kotani, Y., Okamoto, H., Kida, H., Appl. Phys. Lett. 72, 1489 (1998).Google Scholar
4. Conibeer, G., Green, M., Cho, E-C., Konig, D., Thin Solid Films 516, 6748 (2008).Google Scholar
5. Panchal, A. K., Solanki, C.S., J. Cryst. Growth 311, 2659 (2009).Google Scholar
6. Liu, X., Zhang, J., Yan, Z., Ma, S., Wang, Y., Mater. Phys. Mech. 4, 80 (2001).Google Scholar
7. Tanaka, A., Saitoa, R., Kamikakea, T., Imamurab, M., Yasuda, H., Solid State Comm. 140, 400 (2006).Google Scholar
8. Seto, T., Orri, T., Hirasawa, M., Aya, N., Thin Films 437, 230 (2003).Google Scholar
9. Lorusso, A., Nassisi, V., Congedo, G., Velardi, N., Prete, P., Appl. Surf. Sci. 255, 5401 (2009).Google Scholar
10. Marine, W., Patrone, L., Luk’yanchik, B., and Sentis, M., Appl. Surf. Sci. 345, 154 (2000).Google Scholar
11. Kabashin, A. V., Sylvestre, J.-P., Patskovsky, S., and Meunier, M., J. Appl. Phys. 91, 3248 (2002).Google Scholar
12. Riabinina, D., Durand, C., Rosei, F. and Chaker, M., Phys. Stat. Sol. (a) 204, 1623 (2007).Google Scholar
13. Fonzo, F.Di, Bailini, A., Russo, V., Baserga, A., Cattaneo, D., Beghi, M., Ossi, P., Casari, C., Bassi, A. Li and Bottani, C., Catalysis Today 116, 69 (2006).Google Scholar
14. Faraci, G., Gibilisco, S., Russo, P., Pennisi, A.R. and Rosa, S. La, Phys. Rev. B 73, 033307 (2006).Google Scholar
15. Conibeer, G., Green, M., Cho, E-C., Konig, D., Thin Solid Films 516, 6748 (2008).Google Scholar
16. Anthony, R., Kortshagen, U., Phys. Rev. B 80, 115407 (2009).Google Scholar
17. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C., Phys Rev Lett. 82, 197 (1999).Google Scholar
18. Kanemitsu, Y., Okamoto, S., Otobe, M., Oda, S., Phys. Rev. B 55, R7375 (1997).Google Scholar
19. Patrone, L., Nelson, D., Safarov, V., Sentis, M., Marine, W., J. Appl. Phys. 87, 3829 (2000).Google Scholar
20. Hagfeldt, A., Gratzel, M., Chem. Rev. 95, 49 (1995).Google Scholar
21. Di, D., Perez-Wurfl, I., Conibeer, G., Green, M.A., Solar Energy Mater. & Solar Cells 94, 2238 (2010).Google Scholar