Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T06:08:52.375Z Has data issue: false hasContentIssue false

Progress on Nonlinear Optical Chromophores and Polymers with Useful Nonlinearity and Thermal Stability

Published online by Cambridge University Press:  16 February 2011

R. J. Twieg
Affiliation:
IBM Research Division, Almadan Research Center, San Jose, California 95120–6099
D. M. Burland
Affiliation:
IBM Research Division, Almadan Research Center, San Jose, California 95120–6099
J. L. Hedrick
Affiliation:
IBM Research Division, Almadan Research Center, San Jose, California 95120–6099
V. Y. Lee
Affiliation:
IBM Research Division, Almadan Research Center, San Jose, California 95120–6099
R. D. Miller
Affiliation:
IBM Research Division, Almadan Research Center, San Jose, California 95120–6099
C. R. Moylan
Affiliation:
IBM Research Division, Almadan Research Center, San Jose, California 95120–6099
W. Volksen
Affiliation:
IBM Research Division, Almadan Research Center, San Jose, California 95120–6099
C. A. Walsh
Affiliation:
IBM Research Division, Almadan Research Center, San Jose, California 95120–6099
Get access

Abstract

Organic nonlinear optical (NLO) polymers must possess large and stable bulk nonlinear properties if they are to be of practical use. Numerous classes of NLO chromophores and polymers have already been evaluated but the selection process, particularly as related to stability issues, has been very stochastic in nature. If suitable chromophores are to be successfully identified their thermochemical degradation Mechanisms Must be elucidated and structural modifications introduced in a rational fashion. We have devised a protocol for the evaluation of NLO chromophores which involves initial screening by thermal analysis (DSC and TGA) and selected molecular hyperpolarizability (EFISH) analysis. The Most promising candidates are incorporated into thermoplastic polymer hosts where bulk nonlinear properties (dijand rij) and additional thermal stability properties are evaluated by spectroscopie Means (UV-VIS). Cyclicvoltammetry (CV) has been identified as a useful tool for evaluation of these chromophores; in the case of azobenzenes with aliphatic amine donor and a nitro acceptor a correlation between the thermal stability and oxidation potential has been found. The Most facile thermal degradation mechanism which occurs in these dyes has been identified and structural changes to the donor group have been introduced to avert the process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prasad, P. N., Williams, D. J., Introduction to Nonlinear Optical Effects in molecules and Polymers, (Wiley, New York, 1991).Google Scholar
2. Boyd, G. T., in Polym. Electron. Photonic Appl., Wong, C. P., Ed., 467, (Academic, Boston, 1993).Google Scholar
3. Lipscomb, G. F., Lytel, R. S., Ticknor, A. J., Van Eck, T. E., Kwiatkowski, S., Girton, D. G., Proc. SPIE, 1337, 23, (1990).CrossRefGoogle Scholar
4. Staehelin, M., Walsh, C. A., Burland, D. M., Miller, R. D., Twieg, R. J., Volksen, W., J. Appl. Phys., 73, 8471, (1993).Google Scholar
5. Man, H. T., Yoon, H. N., Adv. Mater., 4, 159 (1992).Google Scholar
6. Walsh, C. A., Burland, D. M., Lee, V. Y., Miller, R. D., Smith, B. A., Twieg, R. J., Volksen, W., Macromol., 26, 3720, (1993).Google Scholar
7. Previously published versions of Fig. 1 (refs 9,10) showed the decay over a shorter period and incorrect demarcation of the one and five year intervals.Google Scholar
8. Moylan, C. R., Miller, R. D., Twieg, R. J., Betterton, K. M., Lee, V. Y., Matray, T. J., Nguyen, C., Chem. Mater., 5, 1499 (1993).Google Scholar
9. Twieg, R. J., Betterton, K. M., Burland, D. M., Lee, V. Y., Miller, R. D., Moylan, C. R., Volksen, W., Walsh, C. A., Proc. SPIE, 2025, in press, (1993).Google Scholar
10. Miller, R. D., Betterton, K. M., Burland, D. M., Lee, V. Y., Moylan, C. R., Twieg, R. J., Walsh, C. A., Volksen, W., Proc. SPIE, 2042, to appear, (1994).Google Scholar
11. Connell, J. W., Hergenrother, P. M., J.Poly. Sci. Part A: Poly. Chem., 29, 1667 (1991).Google Scholar
12. Xie, S., Natansohn, A., Rochon, P., Chem. Mater., 5, 403 (1993).Google Scholar
13. Masui, M., Sayo, H., J. Chem. Soc. (B), 1593, (1971).Google Scholar
14. Fasani, E., Soldi, T., Albini, A., Pietra, S., Gazz. Chim. Ital., 120, 109 (1990).Google Scholar
15. Hallas, G., Jalil, M. A., Dyes and Pigments, 20, 13 (1992) and references therein.Google Scholar
16. Lyuts, A. E., Gabdrakipov, V. Z., Shlygina, I. A., Petropavlov, V. A., Jour. Struct. Chem., 27, 629 (1987).Google Scholar
17. Ahlbrecht, H., Duber, E. O., Epsztajn, J., Marcinkowski, R. M. K., Tet., 40, 1157 (1984).Google Scholar
18. Muller, E., Ed. Methoden der Organischen Chemie, IV/1b, Oxidation Teil 2, 967, (Georg Thieme, Stuttgart, 1975).Google Scholar
19. Twieg, R., Prime, R. B., unpublished results.Google Scholar
20. Hubbard, M. A., Marks, T. J., Yang, J., Wong, G. K., Chem. Mater., 1, 167 (1989).Google Scholar
21. Matsuoka, M., Shikizai Kyokaishi, 62, 352 (1989); CA111:142941s.Google Scholar
22. Ermer, S., Leung, D. S., Lovejoy, S. M., Valley, J. F., Stiller, M., OSA Technical Digest Series, 17, 50 (1993).Google Scholar
23. Aramaki, S., JP05032597 (9 Feb 1993), JP05034743 (12 Feb 1993).Google Scholar
24. Moylan, C. R., Twieg, R. J., Lee, V. Y., Swanson, S. A., Betterton, K. M., Miller, R. D., J. Am. Chem. Soc, in press.Google Scholar
25. Mcmahon, R., personal communication.Google Scholar