Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T07:30:33.907Z Has data issue: false hasContentIssue false

Probing the Interfacial Adhesion Strength in Compositional Libraries of Epoxy Films

Published online by Cambridge University Press:  26 February 2011

Christopher M Stafford
Affiliation:
chris.stafford@nist.gov, National Institute of Standards and Technology, NIST, 100 Bureau Dr., Gaithersburg, MD, 20899, United States
Jae Hyun Kim
Affiliation:
jae.kim@nist.gov, National Institute of Standards and Technology
Daisuke Kawaguchi
Affiliation:
daisuke@apchem.nagoya-u.ac.jp, Nagoya University
Gareth Royston
Affiliation:
g.royston@sheffield.ac.uk, University of Sheffield
Martin Y.M. Chiang
Affiliation:
martin.chiang@nist.gov, National Institute of Standards and Technology
Get access

Abstract

We are developing a measurement platform, based on the edge delamination test geometry, geared towards combinatorial and high-throughput (C&HT) assessment of interfacial adhesion and reliability of epoxy films bonded to a rigid substrate. A critical parameter space to be explored is composition of the epoxy formulation. We have constructed an automated mixing and deposition system for creating discrete and continuous gradients in composition of viscous epoxy formulations. By dicing the combinatorial library into a contiguous discrete sample array, the interfacial adhesion strength can be deduced from the critical stress required to debond each film cell from the substrate. These results can be used to predict the adhesion reliability of epoxy formulations as a function of composition and applied stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hoogenboom, R., and Schubert, U. S., Rev. Sci. Instrum. 76, 062202 (2005).Google Scholar
2 Zhang, H., Hoogenboom, R., Meier, M. A. R., Schubert, U. S. Meas. Sci. Technol. 16, 203 (2005).Google Scholar
3 Genzer, J. J. Adhes. 81, 417 (2005).Google Scholar
4 Cygan, Z. T., Cabral, J. T., Beers, K. L., Amis, E. J. Langmuir 21, 3629 (2005).Google Scholar
5 Chisholm, B., Potyrailo, R., Cawse, J., Shaffer, R., Brennan, M., Molaison, C., Whisenhunt, D., Flanagan, B., Olson, D., Akhave, J., Saunders, D., Mehrabi, A., Licon, M. Prog. Org. Coat. 45, 313 (2002).Google Scholar
6 Grunlan, J. C., Holquin, D. L., Chuang, H. K., Perez, I., Chavira, A., Quilatan, R., Akhave, J., Mehrabi, A.R. Macromol. Rapid Comm. 25, 286, (2004).Google Scholar
7 Sormana, J. L., Chattopadhyay, S., Meredith, J. C. Rev. Sci. Instrum. 76, 062214 (2005).Google Scholar
8 Kossuth, M. B., Hajduk, D. A., Freitag, C., Varni, J. Macromol. Rapid Comm. 25, 243 (2004).Google Scholar
10 Farris, R. J., Bauer, C. L. J. Adhes. 26, 293 (1988).Google Scholar
11 Shaffer, E. O., McGarry, F. J., Hoang, L. Polym. Eng. Sci. 36, 2375 (1996).Google Scholar
12 Chiang, M. Y. M., Wu, W. L., He, J. M. Amis, E. J. Thin Solid Films 437, 197 (2003).Google Scholar
13 Chiang, M. Y. M., Song, R., Crosby, A. J., Karim, A., Chiang, C. K., Amis, E. J. Thin Solid Films 476, 379 (2005).Google Scholar
14 Certain equipment, instruments or materials are identified in this paper in order to adequately specify the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology nor does it imply the materials are necessarily the best available for the purpose.Google Scholar