Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T19:05:58.005Z Has data issue: false hasContentIssue false

Pressureless Sintering of Sodalite Waste-forms for the Immobilization of Pyroprocessing Wastes

Published online by Cambridge University Press:  06 May 2015

M. R. Gilbert*
Affiliation:
AWE, Aldermaston, Reading, RG7 4PR, UK.
Get access

Abstract

Sodalite (Na8[AlSiO4]6Cl2), a naturally occurring Cl-containing mineral, has long been regarded as a potential immobilization matrix for the chloride salt wastes arising from pyrochemical reprocessing operations, as it allows for the conditioning of the waste salt as a whole without the need for any pre-treatment. Here the consolidation and densification of Sm-doped sodalite (as an analogue for AnCl3) has been investigated with the aim of producing fully dense (i.e. > 95 % t.d.) ceramic monoliths via conventional cold-press-and-sinter techniques at temperatures of < 1000 °C. Microstructural analysis of pressed and sintered sodalite powders under these conditions is shown to produce poorly sintered, porous, inhomogeneous pellets. However, by the addition of a sodium aluminophosphate glass sintering aid, fully dense Sm-sodalite ceramic monoliths can successfully be produced by sintering at temperatures as low as 800 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nishimure, T., Koyama, T., Iizuka, M., Tanaka, H., Prog. Nucl. Energy, 32, 381 (1998).CrossRefGoogle Scholar
Taylor, I. N., Thompson, M. L., Johnson, T. R., Proceedings of the International Conference and Technology Exposition on Future Nuclear, 1, 690 (1993).Google Scholar
Lee, W. E., Grimes, R. W., Energy Materials, 1, 22 (2006).CrossRefGoogle Scholar
Sandland, T.O., Du, L.-S., Stebbins, J.F., Webster, J.D., Geochim. Cosmochim. Acta, 68, 5059 (2004).CrossRefGoogle Scholar
Leturcq, G., Grandjean, A., Rigaud, D., Perouty, P., Charlot, M., J. Nucl. Mater., 347, 111 (2005).CrossRefGoogle Scholar
Rouguerol, J., Anvir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D., Sing, K. S. W., Unger, K. K., Pure Appl. Chem., 66, 1739 (1994).CrossRefGoogle Scholar
Lewis, M. A., Pereira, C., US Patent No. 5,613,240, (18 Mar 1997).Google Scholar
Pereira, C., ANL/CMT/CP–84675, (1996).Google Scholar
Priebe, S., Nucl. Tech., 162, 199 (2008).CrossRefGoogle Scholar
Lewis, M. A., Fischer, D. F., Smith, L. J., J. Am. Ceram. Soc., 76, 2826 (1993).CrossRefGoogle Scholar
Moschetti, T. J., Johnson, S. G., DiSanto, T., Noy, M. H., Warren, A. R., Sinkler, W., Goff, K. M., Bateman, K. J., Mater. Res. Soc. Symp. Proc., 713, 329 (2002).Google Scholar
Riley, B. J., Crum, J. V., Matyáš, J., McCloy, J. S., Lepry, W. C., J. Am. Ceram. Soc., 95, 3115 (2012).CrossRefGoogle Scholar
Lepry, W. C., Riley, B. J., Crum, J. V., Rodriguez, C. P., Pierce, D. A., J. Nucl. Mater., 442, 350359 (2013).CrossRefGoogle Scholar
Riley, B. J., Pierce, D. A., Frank, S. M., Matyáš, J., Burns, C. A., J. Nucl. Mater., 459, 313322 (2015).CrossRefGoogle Scholar
De Angelis, G., Bardez-Giboire, I., Mariani, M., Capone, M., Chartier, M., Macerata, E., Mater. Res. Soc. Symp. Proc., 1193, 7378 (2009).CrossRefGoogle Scholar