Published online by Cambridge University Press: 22 February 2011
A classic problem in polymer science is the preferential adsorption at a solid interface of one polymer species from a multi-component fluid mixture. Prototype systems for studying this selective adsorption process are solutions consisting of alkane molecules of two different lengths in the presence of a solid interface. Before neutron diffraction could be used to probe structural questions related to the selective adsorption process in such systems, a significant effort was required to develop methods for fabricating suitable samples. We describe techniques for preparing samples of long-alkane monolayers adsorbed on exfoliated graphite by adsorption from solution and by deposition from the vapor phase.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.