Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:17:06.816Z Has data issue: false hasContentIssue false

Preparation and Mechanical Characterization of a Polymer-Matrix Composite Reinforced with PET

Published online by Cambridge University Press:  01 February 2011

J. Elena Salazar–Nieto
Affiliation:
Departamento de Materiales, Universidad Autónoma Metropolitana, Av. San Pablo No. 180, Col. Reynosa-Tamaulipas, México, D. F., 02200.
Alejandro Altamirano–Torres
Affiliation:
Departamento de Materiales, Universidad Autónoma Metropolitana, Av. San Pablo No. 180, Col. Reynosa-Tamaulipas, México, D. F., 02200.
Francisco Sandoval–Pérez
Affiliation:
Departamento de Materiales, Universidad Autónoma Metropolitana, Av. San Pablo No. 180, Col. Reynosa-Tamaulipas, México, D. F., 02200.
Enrique Rocha–Rangel
Affiliation:
Universidad Politécnica de Victoria, Avenida Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas, 87137, México
Get access

Abstract

In this study, polymer-matrix composites are fabricated by mixing liquid epoxy resin with 0, 15, 20 and 25 wt % of PET. PET is used as a reinforcement material since it can be recycled and this implies a beneficial environmental impact. After mixing, specimens are dried at room temperature during 24 h and then cured at 150°C during 0.5, 0.75 and 1 h. Then mechanical tests are performed. Experimental results obtained from the flexion test for 100 % epoxy resin and 15 % PET samples, without curing treatment show values of 30 and 21 MPa, respectively. Flexure strength values for the same samples but after curing treatment are: 56, 90, 32 MPa and 69, 64, 70 MPa, for 0.5, 0.75 and 1 h of treatment, respectively. These data show an important increase in the flexure strength for the sample reinforced with 15 % PET and curing time of 1h. This is most likely due to the behavior of PET's powders at this temperature and time. They can partially melt improving the adhesion to the polymeric matrix. For a curing time of 0.75h, this property decreases, due to the high porosity developed in the composite and the poor adhesion between polymeric matrix and reinforced material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Buck, S.E., Lischer, D.W. and Nemat-Nasser, S., Material Science and Engineering, A317 (2001) 128.Google Scholar
2. Arribas, J.M., Navarro, J.M. and Rial, C., “Compuestos de polipropileno reforzado con fibras Vegetales; Una alternativa ecológica para la industria del automóvil”. Revista de Plásticos Modernos, 81 (2001) 467.Google Scholar
3. Bledzki, A.K. and Gassan, J.. “Composites reinforced with cellulose based fibers”. Elsevier Science Ltd., (1999).Google Scholar
4. Jasso, C.F., Hernández, H., San-Juan D., R., González, J. and Mendizábal, E., “Fibras celulósicas como agentes de refuerzo para resinas poliéster entrecruzadas con estireno o acrilato de butilo”. CUCEI. http://www.geocities.com/dkatime.Google Scholar
5. Nabi, D. and Jog, J.P., “Natural Fiber Polymer Composites: A Review”, Adv. Polym. Technology, 18 (1999) 351.Google Scholar
6. Madera Santana, J., Aguilar Vega, M. and F., F. Vázquez Moreno, “Potencial de las fibras naturales para su uso industrial”, Ciencia Ergo Sum, Noviembre 2000, Toluca, México.Google Scholar