Published online by Cambridge University Press: 25 February 2011
Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives at 1000°C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm3, depending upon the formulation. Major phases are CaF2, CaZrTi2O7, CaTiO3, monoclinic ZrO2, and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO2, CaO, and Si02) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U238. The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO2. Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF2, Al2O3, and ZrSiO4 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides.