Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T11:21:45.690Z Has data issue: false hasContentIssue false

Photoinduced conductivity enhancement in quantum dot/multilayer graphene nanostructures

Published online by Cambridge University Press:  30 June 2015

Yulia A. Gromova
Affiliation:
ITMO University, Kronverkskiy 49, Saint Petersburg, Russia;
Ivan A. Reznik
Affiliation:
ITMO University, Kronverkskiy 49, Saint Petersburg, Russia;
Ilia A. Vovk
Affiliation:
ITMO University, Kronverkskiy 49, Saint Petersburg, Russia;
Simas Rackauskas
Affiliation:
CCS UNICAMP, 13083-870, Campinas, Brazil;
Andrei V. Alaferdov
Affiliation:
CCS UNICAMP, 13083-870, Campinas, Brazil; Lobachevsky State University of Nizhni Novgorod, Gagarine Av. 23/3, Nizhni Novgorod, Russia
Anna A. Orlova
Affiliation:
ITMO University, Kronverkskiy 49, Saint Petersburg, Russia;
Stanislav A. Moshkalev
Affiliation:
CCS UNICAMP, 13083-870, Campinas, Brazil;
Alexander V. Baranov
Affiliation:
ITMO University, Kronverkskiy 49, Saint Petersburg, Russia;
Anatoly V. Fedorov
Affiliation:
ITMO University, Kronverkskiy 49, Saint Petersburg, Russia;
Get access

Abstract

We report on the formation of photoactive hybrid structures based on multilayer graphene nanobelts and CdSe/ZnS quantum dots (QDs) on Pt microelectrodes. We have found that heat treatment in mild conditions enhances rate of electrical photoresponse of the hybrid structures due to elimination of long-lived charge traps. We also show that the electrical photoresponse polarity depends on the energy level structure of the QDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature nanotechnology 4, 839843 (2009).CrossRefGoogle ScholarPubMed
Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photonics 4, 297301 (2010).CrossRefGoogle Scholar
Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano letters 11, 41344137 (2011).CrossRefGoogle Scholar
Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648652 (2011).CrossRefGoogle ScholarPubMed
Echtermeyer, T. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature communications 2, 458 (2011).CrossRefGoogle ScholarPubMed
Koppens, F. H., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano letters 11, 33703377 (2011).CrossRefGoogle ScholarPubMed
Lin, Y. et al. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS nano 4, 30333038 (2010).CrossRefGoogle ScholarPubMed
Dai, L. Layered graphene/quantum dots: nanoassemblies for highly efficient solar cells. ChemSusChem 3, 797799 (2010).CrossRefGoogle ScholarPubMed
Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature nanotechnology 7, 363368 (2012).CrossRefGoogle ScholarPubMed
Sun, Z. et al. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity. Advanced Materials 24, 58785883 (2012).CrossRefGoogle ScholarPubMed
Gromova, Y. A. et al. in SPIE Photonics Europe. 91262K-91262K-91266 (International Society for Optics and Photonics).Google Scholar
Kuno, M., Fromm, D., Hamann, H., Gallagher, A. & Nesbitt, D. “On”/“off” fluorescence intermittency of single semiconductor quantum dots. The Journal of chemical physics 115, 10281040 (2001).CrossRefGoogle Scholar
Zhang, K., Chang, H., Fu, A., Alivisatos, A. P. & Yang, H. Continuous distribution of emission states from single CdSe/ZnS quantum dots. Nano Letters 6, 843847 (2006).CrossRefGoogle ScholarPubMed
Konstantatos, G., Levina, L., Fischer, A. & Sargent, E. H. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano letters 8, 14461450 (2008).CrossRefGoogle ScholarPubMed
Talapin, D. V., Rogach, A. L., Kornowski, A., Haase, M. & Weller, H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture. Nano Letters 1, 207211, doi:10.1021/nl0155126 (2001).CrossRefGoogle Scholar
Murray, C., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 115, 87068715 (1993).CrossRefGoogle Scholar
Maijenburg, A. et al. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes. Journal of colloid and interface science 355, 486493 (2011).CrossRefGoogle ScholarPubMed
Moshkalev, S. et al. Formation of reliable electrical and thermal contacts between graphene and metal electrodes by laser annealing. Microelectronic Engineering 121, 5558 (2014).CrossRefGoogle Scholar
Alaferdov, A. et al. Formation of thin, flexible, conducting films composed of multilayer graphene. Bulletin of the Russian Academy of Sciences: Physics 78, 13571361 (2014).CrossRefGoogle Scholar
Kathalingam, A., Senthilkumar, V. & Rhee, J.-K. Hysteresis I–V nature of mechanically exfoliated graphene FET. Journal of Materials Science: Materials in Electronics 25, 13031308 (2014).Google Scholar
Giovannetti, G. et al. Doping graphene with metal contacts. Physical Review Letters 101, 026803 (2008).CrossRefGoogle ScholarPubMed