Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:38:33.714Z Has data issue: false hasContentIssue false

Pb(Zr,Ti)O3 Nanofibers Produced by Electrospinning Process

Published online by Cambridge University Press:  01 February 2011

Ebru Mensur Alkoy
Affiliation:
ebrualkoy@sabanciuniv.edu, Sabanci University, Materials Science, Istanbul, Turkey
Canan Dagdeviren
Affiliation:
dagdeviren@sabanciuniv.edu, Sabanci University, Materials Science, Istanbul, Turkey
Melih Papila
Affiliation:
mpapila@sabanciuniv.edu, Sabanci University, Materials Science, Istanbul, Turkey
Get access

Abstract

Lead zirconate titanate (PZT) nanofibers are obtained by electrospinning a sol-gel based solution and polyvinyl pyrrolidone (PVP) polymer, and subsequent sintering of the electrospun precursor fibers. The PVP content of the precursor solution is critical in the formation of the fully fibrous mats. Scanning electron microscope (SEM) is used to examine the morphology of the precursor fibers and annealed PZT nanofibers. The diameters of the precursor PZT/PVP green fibers have increased with the aging of the precursor solution along with an increase in the viscosity. The viscosity of 500 mPa results in successful fibrous mats, yielding green PZT/PVP fibers with a diameter of 400 nm. The fiber mats are then sintered at 700°C. X-ray diffraction (XRD) pattern of the annealed PZT fibers exhibits no preferred orientation and a pure tetragonal perovskite phase. Preparation of piezocomposites by infusion of epoxy into the nanofiber mat facilitates successful handling of the fragile mats and enables measurements of dielectric properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maeda, R., Tsaur, J.J., Lee, S.H. and Ichiki, M., J. Electroceram. 12, 89 (2004).Google Scholar
2. Setter, N. and Waser, R., Acta Mater. 48, 151 (2000).Google Scholar
3. Ouellette, J., The Industrial Physicist 2, 4, 10 (1996).Google Scholar
4. Xu, S., Shi, Y. and Kim, S., Nanotechnology 17, 4497 (2006).Google Scholar
5. Zhang, X.Y., Zhao, X., Lai, C.W., Tang, X.G., and Dai, J.Y.., Appl. Phys. Lett. 85, 18, 4190 (2004).Google Scholar
6. Meyer, R. Jr., Shrout, T. and Yoshikawa, S., J. Am. Ceram. Soc. 81, 861868 (1998)Google Scholar
7. Zhang, M., Salvado, I.M.M. and Vilarinho, P.M., J. Am. Ceram. Soc. 90, 358363 (2007)Google Scholar
8. Kitaoka, K., J. Am. Ceram. Soc. 81, 11891196 (1998)Google Scholar
9. Wang, Y., Furlan, R., Ramos, I., Santiago-Aviles, J.J., Appl. Phys. A 78, 10431047 (2004)Google Scholar
10. Dharmaraj, N., Kim, C.H., Kim, H.Y., Mat. Lett. 59, 30853089 (2005)Google Scholar
11. Xu, S., Shi, Y., Kim, S., Nanotechnology 17, 44974501 (2006)Google Scholar
12. Zhou, Z.H., Gao, X.S. and Wang, J., Appl. Phys. Lett. 90, 052902 (2007)Google Scholar
13. Mensur Alkoy, E., Alkoy, S. and Shiosaki, T., Jpn. J. Appl. Phys., 44, 12, 8606 (2005).Google Scholar
14. Sharma, P. K., Ounaies, Z., Varadan, V. V. and Varadan, V. K., Smart Mat. And Str., 10, 878883, (2001).Google Scholar